1. Olivine-rich asteroids in the main asteroid belt
- Author
-
Demeo, Francesca E., Polishook, David, Benoit Carry, Moskovitz, Nick, Burt, Brian, Binzel, Rick, Massachusetts Institute of Technology, Jakokoski Observatory, University of Helsinki, Institut de Mécanique Céleste et de Calcul des Ephémérides (IMCCE), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Astéroïdes, comètes, météores et éphémérides (ACME), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, and Lowell Observatory, Flagstaff
- Subjects
[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
International audience; Olivine-dominated asteroids, classified as A-types with near-infrared spectral measurements are largely thought to be the mantle remnants of disrupted differentiated small bodies. These A-type asteroids hold clues to asteroid differentiation and to the collisional history of those differentiated bodies. Preliminary studies of the abundance and distribution of A-type asteroids were performed by Carvano et al. (2010) and DeMeo & Carry (2013, 2014) using the Sloan Digital Sky Survey (SDSS). To confidently identify these olivine-dominated A-type asteroids, however, near-infrared spectral measurements are needed to identify the distinct broad and deep 1-micron olivine absorption feature. Using the Sloan Digital Sky Survey Moving Object Catalog to select A-type asteroid candidates, we have performed a near-infrared spectral survey of over 70 asteroids with SpeX on the IRTF. We present the abundance and distribution of A-type asteroids throughout the main asteroid belt and compare these results with similar surveys for basalt-rich V-type asteroids (e.g. Moskovitz et al. 2008). This work is supported by NASA under grant number NNX12AL26G issued through the Planetary Astronomy Program.
- Published
- 2015