19 results on '"Kwiatkowska KM"'
Search Results
2. Clonal hematopoiesis in cardiovascular aging: Insights from the verona heart study.
- Author
-
Kwiatkowska KM, Martinelli N, Bertamini L, De Fanti S, Olivieri O, Sala C, Castellani G, Xumerle L, Zago E, Busti F, Giuliani C, Garagnani P, and Girelli D
- Abstract
Clonal hematopoiesis of indeterminate potential (CHIP), marked by the accumulation of somatic mutations in hematopoietic stem cells, significantly elevates the risk of all-cause mortality, mainly due to cardiovascular events. Therefore, investigating this pathophysiological phenomenon is crucial for understanding cardiovascular aging and enhancing both health span and lifespan. In the present study, we examined samples of subjects enrolled within the angiographically controlled Verona Heart Study (VHS), which provides a robust model for cardiovascular aging, particularly regarding coronary artery disease (CAD). We analyzed 44 older subjects diagnosed with coronary artery disease (CAD) and 42 healthy, sex- and age-matched controls (CAD-FREE). Employing deep sequencing and an amplicon-based approach, we focused on 11 key genetic regions in ASXL1, DNMT3A, IDH1, IDH2, JAK2, PPM1D, SF3B1, SRSF2, TET2, TP53, and U2AF1 genes to investigate clonal hematopoiesis. Subjects in the CAD group exhibited a significantly higher variant burden than those in the CAD-FREE group, both in terms of the total number of somatic variants and disruptive variants affecting protein function. This increased mutational load was notably influenced by six specific genetic regions: ASXL1, DNMT3A, IDH2, JAK2, TET2, and U2AF1, which displayed elevated variant rates in the CAD subjects. Moreover, ASXL1, DNMT3A, IDH2, JAK2, SF3B1, TET2, and TP53 exhibited substantially higher levels of disruptive variants in the CAD group. In summary, our findings highlight a correlation between clonal hematopoiesis and the accumulation of disruptive variants in specific genomic regions in the VHS cohort, thereby shedding light on their potential role in cardiovascular aging., (© 2024. The Author(s), under exclusive licence to American Aging Association.)
- Published
- 2024
- Full Text
- View/download PDF
3. Epigenetic age acceleration in hematopoietic stem cell transplantation.
- Author
-
Ursi M, Kwiatkowska KM, Pirazzini C, Storci G, Messelodi D, Bertuccio SN, De Matteis S, Iannotta F, Tomassini E, Roberto M, Naddeo M, Laprovitera N, Salamon I, Sinigaglia B, Dan E, De Felice F, Barbato F, Maffini E, Falcioni S, Arpinati M, Ferracin M, Bonafè M, Garagnani P, and Bonifazi F
- Abstract
Not available.
- Published
- 2024
- Full Text
- View/download PDF
4. B Cells Isolated from Individuals Who Do Not Respond to the HBV Vaccine Are Characterized by Higher DNA Methylation-Estimated Aging Compared to Responders.
- Author
-
Kwiatkowska KM, Anticoli S, Salvioli S, Calzari L, Gentilini D, Albano C, Di Prinzio RR, Zaffina S, Carsetti R, Ruggieri A, and Garagnani P
- Abstract
Healthcare workers (HCWs) are a high-risk group for hepatitis B virus (HBV) infection. Notably, about 5-10% of the general population does not respond to the HBV vaccination. In this study, we aimed to investigate DNA methylation (DNAm) in order to estimate the biological age of B cells from HCW of both sexes, either responder (R) or non-responder (NR), to HBV vaccination. We used genome-wide DNA methylation data to calculate a set of biomarkers in B cells collected from 41 Rs and 30 NRs between 22 and 62 years old. Unresponsiveness to HBV vaccination was associated with accelerated epigenetic aging (DNAmAge, AltumAge, DunedinPoAm) and was accompanied by epigenetic drift. Female non-responders had higher estimates of telomere length and lower CRP inflammation risk score when compared to responders. Overall, epigenetic differences between responders and non-responders were more evident in females than males. In this study we demonstrated that several methylation DNAm-based clocks and biomarkers are associated with an increased risk of non-response to HBV vaccination, particularly in females. Based on these results, we propose that accelerated epigenetic age could contribute to vaccine unresponsiveness. These insights may help improve the evaluation of the effectiveness of vaccination strategies, especially among HCWs and vulnerable patients.
- Published
- 2024
- Full Text
- View/download PDF
5. DNA Methylation-derived biological age and long-term mortality risk in subjects with type 2 diabetes.
- Author
-
Sabbatinelli J, Giuliani A, Kwiatkowska KM, Matacchione G, Belloni A, Ramini D, Prattichizzo F, Pellegrini V, Piacenza F, Tortato E, Bonfigli AR, Gentilini D, Procopio AD, Garagnani P, Olivieri F, and Bronte G
- Subjects
- Humans, Middle Aged, Male, Female, Risk Factors, Risk Assessment, Age Factors, Time Factors, Aged, Prognosis, Aging genetics, Genetic Markers, Inflammation Mediators blood, Predictive Value of Tests, Diabetes Mellitus, Type 2 mortality, Diabetes Mellitus, Type 2 diagnosis, Diabetes Mellitus, Type 2 genetics, Diabetes Mellitus, Type 2 blood, DNA Methylation, Epigenesis, Genetic
- Abstract
Background: Individuals with type 2 diabetes (T2D) face an increased mortality risk, not fully captured by canonical risk factors. Biological age estimation through DNA methylation (DNAm), i.e. the epigenetic clocks, is emerging as a possible tool to improve risk stratification for multiple outcomes. However, whether these tools predict mortality independently of canonical risk factors in subjects with T2D is unknown., Methods: Among a cohort of 568 T2D patients followed for 16.8 years, we selected a subgroup of 50 subjects, 27 survived and 23 deceased at present, passing the quality check and balanced for all risk factors after propensity score matching. We analyzed DNAm from peripheral blood leukocytes using the Infinium Human MethylationEPIC BeadChip (Illumina) to evaluate biological aging through previously validated epigenetic clocks and assess the DNAm-estimated levels of selected inflammatory proteins and blood cell counts. We tested the associations of these estimates with mortality using two-stage residual-outcome regression analysis, creating a reference model on data from the group of survived patients., Results: Deceased subjects had higher median epigenetic age expressed with DNAmPhenoAge algorithm (57.49 [54.72; 60.58] years. vs. 53.40 [49.73; 56.75] years; p = 0.012), and accelerated DunedinPoAm pace of aging (1.05 [1.02; 1.11] vs. 1.02 [0.98; 1.06]; p = 0.012). DNAm PhenoAge (HR 1.16, 95% CI 1.05-1.28; p = 0.004) and DunedinPoAm (HR 3.65, 95% CI 1.43-9.35; p = 0.007) showed an association with mortality independently of canonical risk factors. The epigenetic predictors of 3 chronic inflammation-related proteins, i.e. CXCL10, CXCL11 and enRAGE, C-reactive protein methylation risk score and DNAm-based estimates of exhausted CD8 + T cell counts were higher in deceased subjects when compared to survived., Conclusions: These findings suggest that biological aging, as estimated through existing epigenetic tools, is associated with mortality risk in individuals with T2D, independently of common risk factors and that increased DNAm-surrogates of inflammatory protein levels characterize deceased T2D patients. Replication in larger cohorts is needed to assess the potential of this approach to refine mortality risk in T2D., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
6. CAR+ extracellular vesicles predict ICANS in patients with B cell lymphomas treated with CD19-directed CAR T cells.
- Author
-
Storci G, De Felice F, Ricci F, Santi S, Messelodi D, Bertuccio SN, Laprovitera N, Dicataldo M, Rossini L, De Matteis S, Casadei B, Vaglio F, Ursi M, Barbato F, Roberto M, Guarino M, Asioli GM, Arpinati M, Cortelli P, Maffini E, Tomassini E, Tassoni M, Cavallo C, Iannotta F, Naddeo M, Tazzari PL, Dan E, Pellegrini C, Guadagnuolo S, Carella M, Sinigaglia B, Pirazzini C, Severi C, Garagnani P, Kwiatkowska KM, Ferracin M, Zinzani PL, Bonafè M, and Bonifazi F
- Subjects
- Humans, Male, Female, Middle Aged, Adult, Aged, Receptors, Chimeric Antigen immunology, Prospective Studies, Extracellular Vesicles immunology, Extracellular Vesicles metabolism, Immunotherapy, Adoptive, Antigens, CD19 immunology, Lymphoma, B-Cell immunology, Lymphoma, B-Cell therapy, Lymphoma, B-Cell blood
- Abstract
BACKGROUNDPredicting immune effector cell-associated neurotoxicity syndrome (ICANS) in patients infused with CAR T cells is still a conundrum. This complication, thought to be consequent to CAR T cell activation, arises a few days after infusion, when circulating CAR T cells are scarce and specific CAR T cell-derived biomarkers are lacking.METHODSCAR+ extracellular vesicle (CAR+EV) release was assessed in human CD19.CAR T cells cocultured with CD19+ target cells. A prospective cohort of 100 patients with B cell lymphoma infused with approved CD19.CAR T cell products was assessed for plasma CAR+EVs as biomarkers of in vivo CD19.CAR T cell activation. Human induced pluripotent stem cell-derived (iPSC-derived) neural cells were used as a model for CAR+EV-induced neurotoxicity.RESULTSIn vitro release of CAR+EVs occurs within 1 hour after target engagement. Plasma CAR+EVs are detectable 1 hour after infusion. A concentration greater than 132.8 CAR+EVs/μL at hour +1 or greater than 224.5 CAR+EVs/μL at day +1 predicted ICANS in advance of 4 days, with a sensitivity and a specificity outperforming other ICANS predictors. ENO2+ nanoparticles were released by iPSC-derived neural cells upon CAR+EV exposure and were increased in plasma of patients with ICANS.CONCLUSIONPlasma CAR+EVs are an immediate signal of CD19.CAR T cell activation, are suitable predictors of neurotoxicity, and may be involved in ICANS pathogenesis.TRIAL REGISTRATIONNCT04892433, NCT05807789.FUNDINGLife Science Hub-Advanced Therapies (financed by Health Ministry as part of the National Plan for Complementary Investments to the National Recovery and Resilience Plan [NRRP]: E.3 Innovative health ecosystem for APC fees and immunomonitoring).
- Published
- 2024
- Full Text
- View/download PDF
7. Adipo-Epithelial Transdifferentiation in In Vitro Models of the Mammary Gland.
- Author
-
Perugini J, Smorlesi A, Acciarini S, Mondini E, Colleluori G, Pirazzini C, Kwiatkowska KM, Garagnani P, Franceschi C, Zingaretti MC, Dani C, Giordano A, and Cinti S
- Subjects
- Humans, Female, Animals, MicroRNAs metabolism, MicroRNAs genetics, Mammary Glands, Animal cytology, Mammary Glands, Animal metabolism, Mammary Glands, Animal growth & development, Organoids cytology, Organoids metabolism, Coculture Techniques, Mice, Models, Biological, Cell Transdifferentiation, Adipocytes cytology, Adipocytes metabolism, Epithelial Cells metabolism, Epithelial Cells cytology
- Abstract
Subcutaneous adipocytes are crucial for mammary gland epithelial development during pregnancy. Our and others' previous data have suggested that adipo-epithelial transdifferentiation could play a key role in the mammary gland alveolar development. In this study, we tested whether adipo-epithelial transdifferentiation occurs in vitro. Data show that, under appropriate co-culture conditions with mammary epithelial organoids (MEOs), mature adipocytes lose their phenotype and acquire an epithelial one. Interestingly, even in the absence of MEOs, extracellular matrix and diffusible growth factors are able to promote adipo-epithelial transdifferentiation. Gene and protein expression studies indicate that transdifferentiating adipocytes exhibit some characteristics of milk-secreting alveolar glands, including significantly higher expression of milk proteins such as whey acidic protein and β-casein. Similar data were also obtained in cultured human multipotent adipose-derived stem cell adipocytes. A miRNA sequencing experiment on the supernatant highlighted mir200c, which has a well-established role in the mesenchymal-epithelial transition, as a potential player in this phenomenon. Collectively, our data show that adipo-epithelial transdifferentiation can be reproduced in in vitro models where this phenomenon can be investigated at the molecular level.
- Published
- 2024
- Full Text
- View/download PDF
8. Downregulation of PLIN2 in human dermal fibroblasts impairs mitochondrial function in an age-dependent fashion and induces cell senescence via GDF15.
- Author
-
Chiariello A, Rossetti L, Valente S, Pasquinelli G, Sollazzo M, Iommarini L, Porcelli AM, Tognocchi M, Conte G, Santoro A, Kwiatkowska KM, Garagnani P, Salvioli S, and Conte M
- Subjects
- Humans, Adult, Aged, Aging metabolism, Aging genetics, Cells, Cultured, Male, Cellular Senescence genetics, Growth Differentiation Factor 15 metabolism, Growth Differentiation Factor 15 genetics, Fibroblasts metabolism, Mitochondria metabolism, Perilipin-2 metabolism, Perilipin-2 genetics, Down-Regulation
- Abstract
Perilipin 2 (PLIN2) is a lipid droplet (LD)-coating protein playing important roles in lipid homeostasis and suppression of lipotoxicity in different tissues and cell types. Recently, a role for PLIN2 in supporting mitochondrial function has emerged. PLIN2 dysregulation is involved in many metabolic disorders and age-related diseases. However, the exact consequences of PLIN2 dysregulation are not yet completely understood. In this study, we knocked down (KD) PLIN2 in primary human dermal fibroblasts (hDFs) from young (mean age 29 years) and old (mean age 71 years) healthy donors. We have found that PLIN2 KD caused a decline of mitochondrial function only in hDFs from young donors, while mitochondria of hDFs from old donors (that are already partially impaired) did not significantly worsen upon PLIN2 KD. This mitochondrial impairment is associated with the increased expression of the stress-related mitokine growth differentiation factor 15 (GDF15) and the induction of cell senescence. Interestingly, the simultaneous KD of PLIN2 and GDF15 abrogated the induction of cell senescence, suggesting that the increase in GDF15 is the mediator of this phenomenon. Moreover, GDF15 KD caused a profound alteration of gene expression, as observed by RNA-Seq analysis. After a more stringent analysis, this alteration remained statistically significant only in hDFs from young subjects, further supporting the idea that cells from old and young donors react differently when undergoing manipulation of either PLIN2 or GDF15 genes, with the latter being likely a downstream mediator of the former., (© 2024 The Authors. Aging Cell published by Anatomical Society and John Wiley & Sons Ltd.)
- Published
- 2024
- Full Text
- View/download PDF
9. Replicative senescence and high glucose induce the accrual of self-derived cytosolic nucleic acids in human endothelial cells.
- Author
-
Ramini D, Giuliani A, Kwiatkowska KM, Guescini M, Storci G, Mensà E, Recchioni R, Xumerle L, Zago E, Sabbatinelli J, Santi S, Garagnani P, Bonafè M, and Olivieri F
- Abstract
Recent literature shows that loss of replicative ability and acquisition of a proinflammatory secretory phenotype in senescent cells is coupled with the build-in of nucleic acids in the cytoplasm. Its implication in human age-related diseases is under scrutiny. In human endothelial cells (ECs), we assessed the accumulation of intracellular nucleic acids during in vitro replicative senescence and after exposure to high glucose concentrations, which mimic an in vivo condition of hyperglycemia. We showed that exposure to high glucose induces senescent-like features in ECs, including telomere shortening and proinflammatory cytokine release, coupled with the accrual in the cytoplasm of telomeres, double-stranded DNA and RNA (dsDNA, dsRNA), as well as RNA:DNA hybrid molecules. Senescent ECs showed an activation of the dsRNA sensors RIG-I and MDA5 and of the DNA sensor TLR9, which was not paralleled by the involvement of the canonical (cGAS) and non-canonical (IFI16) activation of the STING pathway. Under high glucose conditions, only a sustained activation of TLR9 was observed. Notably, senescent cells exhibit increased proinflammatory cytokine (IL-1β, IL-6, IL-8) production without a detectable secretion of type I interferon (IFN), a phenomenon that can be explained, at least in part, by the accumulation of methyl-adenosine containing RNAs. At variance, exposure to exogenous nucleic acids enhances both IL-6 and IFN-β1 expression in senescent cells. This study highlights the accrual of cytoplasmic nucleic acids as a marker of senescence-related endothelial dysfunction, that may play a role in dysmetabolic age-related diseases., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
10. Analyses of human vaccine-specific circulating and bone marrow-resident B cell populations reveal benefit of delayed vaccine booster dosing with blood-stage malaria antigens.
- Author
-
Barrett JR, Silk SE, Mkindi CG, Kwiatkowska KM, Hou MM, Lias AM, Kalinga WF, Mtaka IM, McHugh K, Bardelli M, Davies H, King LDW, Edwards NJ, Chauhan VS, Mukherjee P, Rwezaula S, Chitnis CE, Olotu AI, Minassian AM, Draper SJ, and Nielsen CM
- Subjects
- Humans, Plasmodium falciparum, Bone Marrow, Antigens, Protozoan, Adjuvants, Immunologic, Immunoglobulin G, Vaccines, Malaria, Vivax prevention & control
- Abstract
We have previously reported primary endpoints of a clinical trial testing two vaccine platforms for the delivery of Plasmodium vivax malaria DBPRII: viral vectors (ChAd63, MVA), and protein/adjuvant (PvDBPII with 50µg Matrix-M™ adjuvant). Delayed boosting was necessitated due to trial halts during the pandemic and provides an opportunity to investigate the impact of dosing regimens. Here, using flow cytometry - including agnostic definition of B cell populations with the clustering tool CITRUS - we report enhanced induction of DBPRII-specific plasma cell and memory B cell responses in protein/adjuvant versus viral vector vaccinees. Within protein/adjuvant groups, delayed boosting further improved B cell immunogenicity compared to a monthly boosting regimen. Consistent with this, delayed boosting also drove more durable anti-DBPRII serum IgG. In an independent vaccine clinical trial with the P. falciparum malaria RH5.1 protein/adjuvant (50µg Matrix-M™) vaccine candidate, we similarly observed enhanced circulating B cell responses in vaccinees receiving a delayed final booster. Notably, a higher frequency of vaccine-specific (putatively long-lived) plasma cells was detected in the bone marrow of these delayed boosting vaccinees by ELISPOT and correlated strongly with serum IgG. Finally, following controlled human malaria infection with P. vivax parasites in the DBPRII trial, in vivo growth inhibition was observed to correlate with DBPRII-specific B cell and serum IgG responses. In contrast, the CD4+ and CD8+ T cell responses were impacted by vaccine platform but not dosing regimen and did not correlate with in vivo growth inhibition in a challenge model. Taken together, our DBPRII and RH5 data suggest an opportunity for protein/adjuvant dosing regimen optimisation in the context of rational vaccine development against pathogens where protection is antibody-mediated., Competing Interests: SD is a named inventor on patent applications relating to RH5 malaria vaccines and adenovirus-based vaccines and is an inventor on intellectual property licensed by Oxford University Innovation to AstraZeneca. AM has an immediate family member who is an inventor on patent applications relating to RH5 malaria vaccines and adenovirus-based vaccines and is an inventor on intellectual property licensed by Oxford University Innovation to AstraZeneca. CC is an inventor on patents that relate to binding domains of erythrocyte-binding proteins of Plasmodium parasites including P. vivax DBP. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2024 Barrett, Silk, Mkindi, Kwiatkowska, Hou, Lias, Kalinga, Mtaka, McHugh, Bardelli, Davies, King, Edwards, Chauhan, Mukherjee, Rwezaula, Chitnis, Olotu, Minassian, Draper and Nielsen.)
- Published
- 2024
- Full Text
- View/download PDF
11. Heterogeneity of Cellular Senescence: Cell Type-Specific and Senescence Stimulus-Dependent Epigenetic Alterations.
- Author
-
Kwiatkowska KM, Mavrogonatou E, Papadopoulou A, Sala C, Calzari L, Gentilini D, Bacalini MG, Dall'Olio D, Castellani G, Ravaioli F, Franceschi C, Garagnani P, Pirazzini C, and Kletsas D
- Subjects
- Humans, Cells, Cultured, Epigenesis, Genetic, Fibroblasts metabolism, Cellular Senescence genetics, DNA Methylation genetics
- Abstract
The aim of the present study was to provide a comprehensive characterization of whole genome DNA methylation patterns in replicative and ionizing irradiation- or doxorubicin-induced premature senescence, exhaustively exploring epigenetic modifications in three different human cell types: in somatic diploid skin fibroblasts and in bone marrow- and adipose-derived mesenchymal stem cells. With CpG-wise differential analysis, three epigenetic signatures were identified: (a) cell type- and treatment-specific signature; (b) cell type-specific senescence-related signature; and (c) cell type-transversal replicative senescence-related signature. Cluster analysis revealed that only replicative senescent cells created a distinct group reflecting notable alterations in the DNA methylation patterns accompanying this cellular state. Replicative senescence-associated epigenetic changes seemed to be of such an extent that they surpassed interpersonal dissimilarities. Enrichment in pathways linked to the nervous system and involved in the neurological functions was shown after pathway analysis of genes involved in the cell type-transversal replicative senescence-related signature. Although DNA methylation clock analysis provided no statistically significant evidence on epigenetic age acceleration related to senescence, a persistent trend of increased biological age in replicative senescent cultures of all three cell types was observed. Overall, this work indicates the heterogeneity of senescent cells depending on the tissue of origin and the type of senescence inducer that could be putatively translated to a distinct impact on tissue homeostasis.
- Published
- 2023
- Full Text
- View/download PDF
12. High frequency of heterozygous rare variants of the SLC34A1 and SLC9A3R1 genes in patients with atypical femur fracture.
- Author
-
Marini F, Giusti F, Marasco E, Xumerle L, Kwiatkowska KM, Garagnani P, Biver E, Ferrari S, Iolascon G, Iantomasi T, and Brandi ML
- Subjects
- Humans, Bone Density Conservation Agents therapeutic use, Diphosphonates therapeutic use, Femur pathology, Osteoporosis drug therapy, Radiography, Risk Factors, Sodium-Phosphate Cotransporter Proteins, Type IIa, Femoral Fractures genetics, Sodium-Hydrogen Exchangers metabolism
- Abstract
Objective: Atypical femur fractures (AFFs) are rare fragility fractures originating at the lateral cortex of the femur, affecting the subtrochanteric or diaphyseal area of thebone with a transverse morphology. Occurrence of AFF is specifically associated with a small number of rare monogenic congenital metabolic bone disorders, such as hypophosphatasia, and with long-term treatment with antiresorptiondrugs. The exact pathogenesis of these fractures remains poorly understood and, except for cases of diagnosed HPP or other AFF-causing bone diseases, it is not possible to assess which patients are at higher riskof developing AFFs as a consequence of anti-resorption therapy., Design: We genetically screened 25 unrelated patients who had developed at least one AFF., Intervention: Genetic screening was performed through a nextgeneration sequencing analysis with a customized panel containing 76 human genes involved in the regulation of the mineralization processWe genetically screened 25 unrelated patients who had developed at least one AFF., Results: We found a relatively high frequency (32.0%) of heterozygous rare variants inthe SLC34A1 and SLC9A3R1 genes, two genes whose heterozygous inactivating mutations have been respectively associated with autosomal dominant hypophosphatemic nephrolithiasis/osteoporosis types 1 and 2 (NPHLOP1and NPHLOP2). Other heterozygous rare variants were found in the BMPR1B, CYP27B1, FBN1, MEPE, PIGO, and PHOSPHO1 genes, each in a single AFF case (4.0%)., Conclusions and Relevance: Our findings suggest that rarevariants of SLC34A1 and SLC9A3R1 could represent a possible genetic risk factor for the occurrence of AFFs. On the other hand, AFFs could represent an unsuspected clinical manifestation and/or an anti-resorption therapycorrelatedadverse event in patients with NPHLOP disorders., (© The Author(s) 2023. Published by Oxford University Press on behalf of (ESE) European Society of Endocrinology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2023
- Full Text
- View/download PDF
13. A Targeted Epigenetic Clock for the Prediction of Biological Age.
- Author
-
Gensous N, Sala C, Pirazzini C, Ravaioli F, Milazzo M, Kwiatkowska KM, Marasco E, De Fanti S, Giuliani C, Pellegrini C, Santoro A, Capri M, Salvioli S, Monti D, Castellani G, Franceschi C, Bacalini MG, and Garagnani P
- Subjects
- Aged, Aged, 80 and over, Humans, CpG Islands genetics, DNA Methylation genetics, Epigenomics methods, Ubiquitin-Protein Ligases genetics, Centenarians, Down Syndrome, Aging genetics, Epigenesis, Genetic
- Abstract
Epigenetic clocks were initially developed to track chronological age, but accumulating evidence indicates that they can also predict biological age. They are usually based on the analysis of DNA methylation by genome-wide methods, but targeted approaches, based on the assessment of a small number of CpG sites, are advisable in several settings. In this study, we developed a targeted epigenetic clock purposely optimized for the measurement of biological age. The clock includes six genomic regions mapping in ELOVL2 , NHLRC1 , AIM2 , EDARADD , SIRT7 and TFAP2E genes, selected from a re-analysis of existing microarray data, whose DNA methylation is measured by EpiTYPER assay. In healthy subjects (n = 278), epigenetic age calculated using the targeted clock was highly correlated with chronological age (Spearman correlation = 0.89). Most importantly, and in agreement with previous results from genome-wide clocks, epigenetic age was significantly higher and lower than expected in models of increased (persons with Down syndrome, n = 62) and decreased (centenarians, n = 106; centenarians' offspring, n = 143; nutritional intervention in elderly, n = 233) biological age, respectively. These results support the potential of our targeted epigenetic clock as a new marker of biological age and open its evaluation in large cohorts to further promote the assessment of biological age in healthcare practice.
- Published
- 2022
- Full Text
- View/download PDF
14. Human lymphoid tissue sampling for vaccinology.
- Author
-
Kwiatkowska KM, Mkindi CG, and Nielsen CM
- Subjects
- Animals, Humans, COVID-19 Vaccines, SARS-CoV-2, Lymphoid Tissue, Vaccinology, COVID-19 prevention & control
- Abstract
Long-lived plasma cells (LLPCs) - largely resident in the bone marrow - secrete antibody over months and years, thus maintaining serum antibody concentrations relevant for vaccine-mediated immunity. Little is known regarding factors that can modulate the induction of human LLPC responses in draining lymph node germinal centres, or those that maintain LLPCs in bone marrow niches following vaccination. Here, we review human and non-human primate vaccination studies which incorporate draining lymph node and/or bone marrow aspirate sampling. We emphasise the key contributions these samples can make to improve our understanding of LLPC immunology and guide rational vaccine development. Specifically, we highlight findings related to the impact of vaccine dosing regimens, adjuvant/vaccine platform selection, duration of germinal centre reactions in draining lymph nodes and relevance for timing of tissue sampling, and heterogeneity in bone marrow plasma cell populations. Much of this work has come from recent studies with SARS-CoV-2 vaccine candidates or, with respect to the non-human primate work, HIV vaccine development., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2022 Kwiatkowska, Mkindi and Nielsen.)
- Published
- 2022
- Full Text
- View/download PDF
15. Recurrent Urinary Tract Infection: A Mystery in Search of Better Model Systems.
- Author
-
Murray BO, Flores C, Williams C, Flusberg DA, Marr EE, Kwiatkowska KM, Charest JL, Isenberg BC, and Rohn JL
- Subjects
- Animals, Humans, Mice, Urinary Bladder, Escherichia coli Infections, Urinary Tract, Urinary Tract Infections, Uropathogenic Escherichia coli
- Abstract
Urinary tract infections (UTIs) are among the most common infectious diseases worldwide but are significantly understudied. Uropathogenic E. coli (UPEC) accounts for a significant proportion of UTI, but a large number of other species can infect the urinary tract, each of which will have unique host-pathogen interactions with the bladder environment. Given the substantial economic burden of UTI and its increasing antibiotic resistance, there is an urgent need to better understand UTI pathophysiology - especially its tendency to relapse and recur. Most models developed to date use murine infection; few human-relevant models exist. Of these, the majority of in vitro UTI models have utilized cells in static culture, but UTI needs to be studied in the context of the unique aspects of the bladder's biophysical environment (e.g., tissue architecture, urine, fluid flow, and stretch). In this review, we summarize the complexities of recurrent UTI, critically assess current infection models and discuss potential improvements. More advanced human cell-based in vitro models have the potential to enable a better understanding of the etiology of UTI disease and to provide a complementary platform alongside animals for drug screening and the search for better treatments., Competing Interests: Authors CW, DF, EM, BC, and JC were or are currently employed by The Charles Stark Draper Laboratory, Inc., a not-for-profit research and development organization that develops hardware for advanced biological models. JR and BM have received research funding from AtoCap Ltd., a University College London spinoff company, to develop novel cures for urinary tract infection and bladder cancer, and JR has share options in the company. JR and CF have also received basic research funding from Pfizer. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2021 Murray, Flores, Williams, Flusberg, Marr, Kwiatkowska, Charest, Isenberg and Rohn.)
- Published
- 2021
- Full Text
- View/download PDF
16. Whole-genome sequencing analysis of semi-supercentenarians.
- Author
-
Garagnani P, Marquis J, Delledonne M, Pirazzini C, Marasco E, Kwiatkowska KM, Iannuzzi V, Bacalini MG, Valsesia A, Carayol J, Raymond F, Ferrarini A, Xumerle L, Collino S, Mari D, Arosio B, Casati M, Ferri E, Monti D, Nacmias B, Sorbi S, Luiselli D, Pettener D, Castellani G, Sala C, Passarino G, De Rango F, D'Aquila P, Bertamini L, Martinelli N, Girelli D, Olivieri O, Giuliani C, Descombes P, and Franceschi C
- Subjects
- Aged, Aged, 80 and over, Cohort Studies, Female, Genetic Background, Humans, Italy, Male, Middle Aged, Mutation, Whole Genome Sequencing methods, Clonal Hematopoiesis genetics, DNA Repair, Longevity genetics, Whole Genome Sequencing statistics & numerical data
- Abstract
Extreme longevity is the paradigm of healthy aging as individuals who reached the extreme decades of human life avoided or largely postponed all major age-related diseases. In this study, we sequenced at high coverage (90X) the whole genome of 81 semi-supercentenarians and supercentenarians [105+/110+] (mean age: 106.6 ± 1.6) and of 36 healthy unrelated geographically matched controls (mean age 68.0 ± 5.9) recruited in Italy. The results showed that 105+/110+ are characterized by a peculiar genetic background associated with efficient DNA repair mechanisms, as evidenced by both germline data (common and rare variants) and somatic mutations patterns (lower mutation load if compared to younger healthy controls). Results were replicated in a second independent cohort of 333 Italian centenarians and 358 geographically matched controls. The genetics of 105+/110+ identified DNA repair and clonal haematopoiesis as crucial players for healthy aging and for the protection from cardiovascular events., Competing Interests: PG, MD, CP, EM, KK, VI, LX, DM, BA, MC, EF, DM, BN, SS, DL, DP, GC, CS, GP, FD, PD, LB, NM, DG, OO, CG, CF No competing interests declared, JM, AV, JC, FR, SC, PD is affiliated with Nestlé Research, Société des Produits Nestlé SA. The author has no other competing interests to declare. MB s affiliated with Nestlé Research, Société des Produits Nestlé SA. The author has no other competing interests to declare. AF is affiliated with Menarini Silicon Biosystems SpA. The author has no other competing interests to declare., (© 2021, Garagnani et al.)
- Published
- 2021
- Full Text
- View/download PDF
17. A Meta-Analysis of Brain DNA Methylation Across Sex, Age, and Alzheimer's Disease Points for Accelerated Epigenetic Aging in Neurodegeneration.
- Author
-
Pellegrini C, Pirazzini C, Sala C, Sambati L, Yusipov I, Kalyakulina A, Ravaioli F, Kwiatkowska KM, Durso DF, Ivanchenko M, Monti D, Lodi R, Franceschi C, Cortelli P, Garagnani P, and Bacalini MG
- Abstract
Alzheimer's disease (AD) is characterized by specific alterations of brain DNA methylation (DNAm) patterns. Age and sex, two major risk factors for AD, are also known to largely affect the epigenetic profiles in brain, but their contribution to AD-associated DNAm changes has been poorly investigated. In this study we considered publicly available DNAm datasets of four brain regions (temporal, frontal, entorhinal cortex, and cerebellum) from healthy adult subjects and AD patients, and performed a meta-analysis to identify sex-, age-, and AD-associated epigenetic profiles. In one of these datasets it was also possible to distinguish 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) profiles. We showed that DNAm differences between males and females tend to be shared between the four brain regions, while aging differently affects cortical regions compared to cerebellum. We found that the proportion of sex-dependent probes whose methylation is modified also during aging is higher than expected, but that differences between males and females tend to be maintained, with only a few probes showing age-by-sex interaction. We did not find significant overlaps between AD- and sex-associated probes, nor disease-by-sex interaction effects. On the contrary, we found that AD-related epigenetic modifications are significantly enriched in probes whose DNAm varies with age and that there is a high concordance between the direction of changes (hyper or hypo-methylation) in aging and AD, supporting accelerated epigenetic aging in the disease. In summary, our results suggest that age-associated DNAm patterns concur to the epigenetic deregulation observed in AD, providing new insights on how advanced age enables neurodegeneration., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2021 Pellegrini, Pirazzini, Sala, Sambati, Yusipov, Kalyakulina, Ravaioli, Kwiatkowska, Durso, Ivanchenko, Monti, Lodi, Franceschi, Cortelli, Garagnani and Bacalini.)
- Published
- 2021
- Full Text
- View/download PDF
18. A geroscience approach for Parkinson's disease: Conceptual framework and design of PROPAG-AGEING project.
- Author
-
Pirazzini C, Azevedo T, Baldelli L, Bartoletti-Stella A, Calandra-Buonaura G, Dal Molin A, Dimitri GM, Doykov I, Gómez-Garre P, Hägg S, Hällqvist J, Halsband C, Heywood W, Jesús S, Jylhävä J, Kwiatkowska KM, Labrador-Espinosa MA, Licari C, Maturo MG, Mengozzi G, Meoni G, Milazzo M, Periñán-Tocino MT, Ravaioli F, Sala C, Sambati L, Schade S, Schreglmann S, Spasov S, Tenori L, Williams D, Xumerle L, Zago E, Bhatia KP, Capellari S, Cortelli P, Garagnani P, Houlden H, Liò P, Luchinat C, Delledonne M, Mills K, Mir P, Mollenhauer B, Nardini C, Pedersen NL, Provini F, Strom S, Trenkwalder C, Turano P, Bacalini MG, and Franceschi C
- Subjects
- Aged, Aged, 80 and over, Female, Humans, Male, Age Factors, Case-Control Studies, Europe, Genomics, Metabolomics, Motor Activity, Nerve Degeneration, Research Design, Signal Transduction, Twin Studies as Topic, Aging genetics, Aging metabolism, Aging pathology, Biomedical Research, Brain metabolism, Brain pathology, Brain physiopathology, Geriatrics, Inflammation Mediators metabolism, Neurons metabolism, Neurons pathology, Parkinson Disease genetics, Parkinson Disease metabolism, Parkinson Disease pathology, Parkinson Disease physiopathology
- Abstract
Advanced age is the major risk factor for idiopathic Parkinson's disease (PD), but to date the biological relationship between PD and ageing remains elusive. Here we describe the rationale and the design of the H2020 funded project "PROPAG-AGEING", whose aim is to characterize the contribution of the ageing process to PD development. We summarize current evidences that support the existence of a continuum between ageing and PD and justify the use of a Geroscience approach to study PD. We focus in particular on the role of inflammaging, the chronic, low-grade inflammation characteristic of elderly physiology, which can propagate and transmit both locally and systemically. We then describe PROPAG-AGEING design, which is based on the multi-omic characterization of peripheral samples from clinically characterized drug-naïve and advanced PD, PD discordant twins, healthy controls and "super-controls", i.e. centenarians, who never showed clinical signs of motor disability, and their offspring. Omic results are then validated in a large number of samples, including in vitro models of dopaminergic neurons and healthy siblings of PD patients, who are at higher risk of developing PD, with the final aim of identifying the molecular perturbations that can deviate the trajectories of healthy ageing towards PD development., (Copyright © 2021 The Authors. Published by Elsevier B.V. All rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF
19. Analysis of Epigenetic Age Predictors in Pain-Related Conditions.
- Author
-
Kwiatkowska KM, Bacalini MG, Sala C, Kaziyama H, de Andrade DC, Terlizzi R, Giannini G, Cevoli S, Pierangeli G, Cortelli P, Garagnani P, and Pirazzini C
- Subjects
- Aged, Aging, DNA Methylation genetics, Humans, Middle Aged, Pain, Epigenesis, Genetic, Epigenomics
- Abstract
Chronic pain prevalence is high worldwide and increases at older ages. Signs of premature aging have been associated with chronic pain, but few studies have investigated aging biomarkers in pain-related conditions. A set of DNA methylation (DNAm)-based estimates of age, called "epigenetic clocks," has been proposed as biological measures of age-related adverse processes, morbidity, and mortality. The aim of this study is to assess if different pain-related phenotypes show alterations in DNAm age. In our analysis, we considered three cohorts for which whole-blood DNAm data were available: heat pain sensitivity (HPS), including 20 monozygotic twin pairs discordant for heat pain temperature threshold; fibromyalgia (FM), including 24 cases and 20 controls; and headache, including 22 chronic migraine and medication overuse headache patients (MOH), 18 episodic migraineurs (EM), and 13 healthy subjects. We used the Horvath's epigenetic age calculator to obtain DNAm-based estimates of epigenetic age, telomere length, levels of 7 proteins in plasma, number of smoked packs of cigarettes per year, and blood cell counts. We did not find differences in epigenetic age acceleration, calculated using five different epigenetic clocks, between subjects discordant for pain-related phenotypes. Twins with high HPS had increased CD8+ T cell counts (nominal p = 0.028). HPS thresholds were negatively associated with estimated levels of GDF15 (nominal p = 0.008). FM patients showed decreased naive CD4+ T cell counts compared with controls (nominal p = 0.015). The severity of FM manifestations expressed through various evaluation tests was associated with decreased levels of leptin, shorter length of telomeres, and reduced CD8+ T and natural killer cell counts (nominal p < 0.05), while the duration of painful symptoms was positively associated with telomere length (nominal p = 0.034). No differences in DNAm-based estimates were detected for MOH or EM compared with controls. In summary, our study suggests that HPS, FM, and MOH/EM do not show signs of epigenetic age acceleration in whole blood, while HPS and FM are associated with DNAm-based estimates of immunological parameters, plasma proteins, and telomere length. Future studies should extend these observations in larger cohorts., (Copyright © 2020 Kwiatkowska, Bacalini, Sala, Kaziyama, de Andrade, Terlizzi, Giannini, Cevoli, Pierangeli, Cortelli, Garagnani and Pirazzini.)
- Published
- 2020
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.