Daniel A. Henk, Elaine Bignell, Heiman F. L. Wertheim, William C. Nierman, Kwok-Yung Yuen, Matthew C. Fisher, Po-Ren Hsueh, Nongnuch Vanittanakom, Alex Andrianopoulos, Tran P M Sieu, Natalie D. Fedorova, Khuraijam Ranjana Devi, Kylie J. Boyce, Nguyen Van Kinh, Stephen Baker, Jeremy N. Day, Revital Shahar-Golan, and Nengyong Zhan
Molecular genetic approaches typically detect recombination in microbes regardless of assumed asexuality. However, genetic data have shown the AIDS-associated pathogen Penicillium marneffei to have extensive spatial genetic structure at local and regional scales, and although there has been some genetic evidence that a sexual cycle is possible, this haploid fungus is thought to be genetically, as well as morphologically, asexual in nature because of its highly clonal population structure. Here we use comparative genomics, experimental mixed-genotype infections, and population genetic data to elucidate the role of recombination in natural populations of P. marneffei. Genome wide comparisons reveal that all the genes required for meiosis are present in P. marneffei, mating type genes are arranged in a similar manner to that found in other heterothallic fungi, and there is evidence of a putatively meiosis-specific mutational process. Experiments suggest that recombination between isolates of compatible mating types may occur during mammal infection. Population genetic data from 34 isolates from bamboo rats in India, Thailand and Vietnam, and 273 isolates from humans in China, India, Thailand, and Vietnam show that recombination is most likely to occur across spatially and genetically limited distances in natural populations resulting in highly clonal population structure yet sexually reproducing populations. Predicted distributions of three different spatial genetic clusters within P. marneffei overlap with three different bamboo rat host distributions suggesting that recombination within hosts may act to maintain population barriers within P. marneffei., Author Summary Fungal pathogen populations show patterns ranging from globally recombining to endemic and clonal. Among the most genetically and spatially restricted fungi is the highly clonal pathogen Penicillium marneffei, an endemic AIDS-associated pathogen in Southeast Asia. Previous studies have shown that P. marneffei has a pattern of extreme clonality despite the ability to disperse across wide distances and the presence of mating type genes that are required for sexual recombination. In this study we used genetic markers, comparative genomics, experimental data, and spatial models to determine the influence of sex on P. marneffei populations, and we found that although there was substantial evidence of sexual recombination, most of the recombination in natural populations was limited to sexual neighborhoods, amongst genetically similar and spatially close individuals. Based on the results of experiments and spatial models we found support for sex occurring in bamboo rats that are known to harbor P. marneffei and the pathogens sexual neighborhoods. Our study suggests that the high levels of effective clonality and endemicity found in P. marneffei may have more to do with specific host interactions than with an innate inability to generate population genetic diversity through sexual recombination.