608 results on '"Lamarre J.-M."'
Search Results
2. Planck intermediate results. LV. Reliability and thermal properties of high-frequency sources in the Second Planck Catalogue of Compact Sources
- Author
-
Planck Collaboration, Akrami, Y., Ashdown, M., Aumont, J., Baccigalupi, C., Ballardini, M., Banday, A. J., Barreiro, R. B., Bartolo, N., Basak, S., Benabed, K., Bernard, J. -P., Bersanelli, M., Bielewicz, P., Bond, J. R., Borrill, J., Bouchet, F. R., Burigana, C., Calabrese, E., Carvalho, P., Chiang, H. C., Crill, B. P., Cuttaia, F., de Rosa, A., de Zotti, G., Delabrouille, J., Delouis, J. -M., Di Valentino, E., Diego, J. M., Dupac, X., Dusini, S., Efstathiou, G., Elsner, F., Enßlin, T. A., Eriksen, H. K., Fernandez-Cobos, R., Finelli, F., Fraisse, A. A., Franceschi, E., Frolov, A., Galeotta, S., Ganga, K., Gerbino, M., González-Nuevo, J., Górski, K. M., Gratton, S., Gruppuso, A., Gudmundsson, J. E., Handley, W., Hansen, F. K., Herranz, D., Hivon, E., Hobson, M., Huang, Z., Jones, W. C., Keihänen, E., Keskitalo, R., Kim, J., Kisner, T. S., Krachmalnicoff, N., Kunz, M., Kurki-Suonio, H., Lamarre, J. -M., Lasenby, A., Lattanzi, M., Lawrence, C. R., Jeune, M. Le, Levrier, F., Lilje, P. B., Lindholm, V., López-Caniego, M., Ma, Y. -Z., Macías-Pérez, J. F., Maggio, G., Mandolesi, N., Marcos-Caballero, A., Maris, M., Martin, P. G., Martínez-González, E., Matarrese, S., Mauri, N., McEwen, J. D., Migliaccio, M., Molinari, D., Moneti, A., Montier, L., Morgante, G., Natoli, P., Paoletti, D., Partridge, B., Perrotta, F., Pettorino, V., Piacentini, F., Polenta, G., Puget, J. -L., Rachen, J. P., Reinecke, M., Remazeilles, M., Renzi, A., Rocha, G., Roudier, G., Ruiz-Granados, B., Savelainen, M., Scott, D., Sirri, G., Spencer, L. D., Suur-Uski, A. -S., Tauber, J. A., Tavagnacco, D., Tenti, M., Toffolatti, L., Tomasi, M., Trombetti, T., Valiviita, J., Van Tent, B., Vielva, P., Villa, F., Wehus, I. K., Zacchei, A., and Zonca, A.
- Subjects
Astrophysics - Astrophysics of Galaxies ,Astrophysics - Cosmology and Nongalactic Astrophysics ,Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
We describe an extension of the most recent version of the Planck Catalogue of Compact Sources (PCCS2), produced using a new multi-band Bayesian Extraction and Estimation Package (BeeP). BeeP assumes that the compact sources present in PCCS2 at 857 GHz have a dust-like spectral energy distribution, which leads to emission at both lower and higher frequencies, and adjusts the parameters of the source and its SED to fit the emission observed in Planck's three highest frequency channels at 353, 545, and 857 GHz, as well as the IRIS map at 3000 GHz. In order to reduce confusion regarding diffuse cirrus emission, BeeP's data model includes a description of the background emission surrounding each source, and it adjusts the confidence in the source parameter extraction based on the statistical properties of the spatial distribution of the background emission. BeeP produces the following three new sets of parameters for each source: (a) fits to a modified blackbody (MBB) thermal emission model of the source; (b) SED-independent source flux densities at each frequency considered; and (c) fits to an MBB model of the background in which the source is embedded. BeeP also calculates, for each source, a reliability parameter, which takes into account confusion due to the surrounding cirrus. We define a high-reliability subset (BeeP/base), containing 26 083 sources (54.1 per cent of the total PCCS2 catalogue), the majority of which have no information on reliability in the PCCS2. The results of the BeeP extension of PCCS2, which are made publicly available via the PLA, will enable the study of the thermal properties of well-defined samples of compact Galactic and extra-galactic dusty sources., Comment: 55 pages. Accepted for publication in A&A. The BeeP catalogue will be published in the Planck Legacy Archive (https://pla.esac.esa.int/pla)
- Published
- 2020
- Full Text
- View/download PDF
3. Planck intermediate results. LVI. Detection of the CMB dipole through modulation of the thermal Sunyaev-Zeldovich effect: Eppur si muove II
- Author
-
Planck Collaboration, Akrami, Y., Ashdown, M., Aumont, J., Baccigalupi, C., Ballardini, M., Banday, A. J., Barreiro, R. B., Bartolo, N., Basak, S., Benabed, K., Bernard, J. -P., Bersanelli, M., Bielewicz, P., Bond, J. R., Borrill, J., Bouchet, F. R., Burigana, C., Calabrese, E., Cardoso, J. -F., Casaponsa, B., Chiang, H. C., Combet, C., Contreras, D., Crill, B. P., Cuttaia, F., de Bernardis, P., de Rosa, A., de Zotti, G., Delabrouille, J., Di Valentino, E., Diego, J. M., Doré, O., Douspis, M., Dupac, X., Enßlin, T. A., Eriksen, H. K., Fernandez-Cobos, R., Finelli, F., Frailis, M., Franceschi, E., Frolov, A., Galeotta, S., Galli, S., Ganga, K., Génova-Santos, R. T., Gerbino, M., González-Nuevo, J., Górski, K. M., Gruppuso, A., Gudmundsson, J. E., Handley, W., Herranz, D., Hivon, E., Huang, Z., Jaffe, A. H., Jones, W. C., Keihänen, E., Keskitalo, R., Kiiveri, K., Kim, J., Kisner, T. S., Krachmalnicoff, N., Kunz, M., Kurki-Suonio, H., Lamarre, J. -M., Lattanzi, M., Lawrence, C. R., Jeune, M. Le, Levrier, F., Liguori, M., Lilje, P. B., Lindholm, V., López-Caniego, M., Macías-Pérez, J. F., Maino, D., Mandolesi, N., Marcos-Caballero, A., Maris, M., Martin, P. G., Martínez-González, E., Matarrese, S., Mauri, N., McEwen, J. D., Mennella, A., Migliaccio, M., Molinari, D., Moneti, A., Montier, L., Morgante, G., Moss, A., Natoli, P., Pagano, L., Paoletti, D., Perrotta, F., Pettorino, V., Piacentini, F., Polenta, G., Rachen, J. P., Reinecke, M., Remazeilles, M., Renzi, A., Rocha, G., Rosset, C., Rubiño-Martín, J. A., Ruiz-Granados, B., Salvati, L., Savelainen, M., Scott, D., Sirignano, C., Sirri, G., Spencer, L. D., Sullivan, R. M., Sunyaev, R., Suur-Uski, A. -S., Tauber, J. A., Tavagnacco, D., Tenti, M., Toffolatti, L., Tomasi, M., Trombetti, T., Valiviita, J., Van Tent, B., Vielva, P., Villa, F., Vittorio, N., Wehus, I. K., Zacchei, A., and Zonca, A.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
The largest temperature anisotropy in the cosmic microwave background (CMB) is the dipole, which has been measured with increasing accuracy for more than three decades, particularly with the Planck satellite. The simplest interpretation of the dipole is that it is due to our motion with respect to the rest frame of the CMB. Since current CMB experiments infer temperature anisotropies from angular intensity variations, the dipole modulates the temperature anisotropies with the same frequency dependence as the thermal Sunyaev-Zeldovich (tSZ) effect. We present the first, and significant, detection of this signal in the tSZ maps and find that it is consistent with direct measurements of the CMB dipole, as expected. The signal contributes power in the tSZ maps, which is modulated in a quadrupolar pattern, and we estimate its contribution to the tSZ bispectrum, noting that it contributes negligible noise to the bispectrum at relevant scales., Comment: 15 pages, 8 figures. Added references, small clarifying and language edits. All results remain the same
- Published
- 2020
- Full Text
- View/download PDF
4. Planck 2018 results
- Author
-
Aghanim, N, Akrami, Y, Ashdown, M, Aumont, J, Baccigalupi, C, Ballardini, M, Banday, AJ, Barreiro, RB, Bartolo, N, Basak, S, Battye, R, Benabed, K, Bernard, J-P, Bersanelli, M, Bielewicz, P, Bock, JJ, Bond, JR, Borrill, J, Bouchet, FR, Boulanger, F, Bucher, M, Burigana, C, Butler, RC, Calabrese, E, Cardoso, J-F, Carron, J, Challinor, A, Chiang, HC, Chluba, J, Colombo, LPL, Combet, C, Contreras, D, Crill, BP, Cuttaia, F, de Bernardis, P, de Zotti, G, Delabrouille, J, Delouis, J-M, Di Valentino, E, Diego, JM, Doré, O, Douspis, M, Ducout, A, Dupac, X, Dusini, S, Efstathiou, G, Elsner, F, Enßlin, TA, Eriksen, HK, Fantaye, Y, Farhang, M, Fergusson, J, Fernandez-Cobos, R, Finelli, F, Forastieri, F, Frailis, M, Fraisse, AA, Franceschi, E, Frolov, A, Galeotta, S, Galli, S, Ganga, K, Génova-Santos, RT, Gerbino, M, Ghosh, T, González-Nuevo, J, Górski, KM, Gratton, S, Gruppuso, A, Gudmundsson, JE, Hamann, J, Handley, W, Hansen, FK, Herranz, D, Hildebrandt, SR, Hivon, E, Huang, Z, Jaffe, AH, Jones, WC, Karakci, A, Keihänen, E, Keskitalo, R, Kiiveri, K, Kim, J, Kisner, TS, Knox, L, Krachmalnicoff, N, Kunz, M, Kurki-Suonio, H, Lagache, G, Lamarre, J-M, Lasenby, A, Lattanzi, M, Lawrence, CR, Le Jeune, M, Lemos, P, Lesgourgues, J, Levrier, F, Lewis, A, and Liguori, M
- Subjects
Space Sciences ,Particle and High Energy Physics ,Astronomical Sciences ,Physical Sciences ,cosmic background radiation ,cosmological parameters ,errata ,addenda ,Astronomical and Space Sciences ,Astronomy & Astrophysics ,Astronomical sciences ,Particle and high energy physics ,Space sciences - Abstract
In the original version, the bounds given in Eqs. (87a) and (87b) on the contribution to the early-time optical depth, (15,30), contained a numerical error in deriving the 95th percentile from the Monte Carlo samples. The corrected 95% upper bounds are: τ(15,30) < 0:018 (lowE, flat τ(15, 30), FlexKnot), (1) τ(15, 30) < 0:023 (lowE, flat knot, FlexKnot): (2) These bounds are a factor of 3 larger than the originally reported results. Consequently, the new bounds do not significantly improve upon previous results from Planck data presented in Millea & Bouchet (2018) as was stated, but are instead comparable. Equations (1) and (2) give results that are now similar to those of Heinrich & Hu (2021), who used the same Planck 2018 data to derive a 95% upper bound of 0.020 using the principal component analysis (PCA) model and uniform priors on the PCA mode amplitudes.
- Published
- 2021
5. Planck intermediate results
- Author
-
Akrami, Y, Ashdown, M, Aumont, J, Baccigalupi, C, Ballardini, M, Banday, AJ, Barreiro, RB, Bartolo, N, Basak, S, Benabed, K, Bernard, J-P, Bersanelli, M, Bielewicz, P, Bond, JR, Borrill, J, Bouchet, FR, Burigana, C, Calabrese, E, Carvalho, P, Chiang, HC, Crill, BP, Cuttaia, F, de Rosa, A, de Zotti, G, Delabrouille, J, Delouis, J-M, Di Valentino, E, Diego, JM, Dupac, X, Dusini, S, Efstathiou, G, Elsner, F, Enßlin, TA, Eriksen, HK, Fernandez-Cobos, R, Finelli, F, Fraisse, AA, Franceschi, E, Frolov, A, Galeotta, S, Ganga, K, Gerbino, M, González-Nuevo, J, Górski, KM, Gratton, S, Gruppuso, A, Gudmundsson, JE, Handley, W, Hansen, FK, Herranz, D, Hivon, E, Hobson, M, Huang, Z, Jones, WC, Keihänen, E, Keskitalo, R, Kim, J, Kisner, TS, Krachmalnicoff, N, Kunz, M, Kurki-Suonio, H, Lamarre, J-M, Lasenby, A, Lattanzi, M, Lawrence, CR, Le Jeune, M, Levrier, F, Lilje, PB, Lindholm, V, López-Caniego, M, Ma, Y-Z, Macías-Pérez, JF, Maggio, G, Mandolesi, N, Marcos-Caballero, A, Maris, M, Martin, PG, Martínez-González, E, Matarrese, S, Mauri, N, McEwen, JD, Migliaccio, M, Molinari, D, Moneti, A, Montier, L, Morgante, G, Natoli, P, Paoletti, D, Partridge, B, Perrotta, F, Pettorino, V, Piacentini, F, Polenta, G, Puget, J-L, Rachen, JP, Reinecke, M, Remazeilles, M, Renzi, A, Rocha, G, and Roudier, G
- Subjects
Astronomical Sciences ,Physical Sciences ,catalogs ,cosmology: observations ,submillimeter: general ,astro-ph.GA ,astro-ph.CO ,astro-ph.IM ,Astronomical and Space Sciences ,Astronomy & Astrophysics ,Astronomical sciences ,Particle and high energy physics ,Space sciences - Abstract
We describe an extension of the most recent version of the Planck Catalogue of Compact Sources (PCCS2), produced using a new multi-band Bayesian Extraction and Estimation Package (BeeP). BeeP assumes that the compact sources present in PCCS2 at 857 GHz have a dust-like spectral energy distribution (SED), which leads to emission at both lower and higher frequencies, and adjusts the parameters of the source and its SED to fit the emission observed in Planck's three highest frequency channels at 353, 545, and 857 GHz, as well as the IRIS map at 3000 GHz. In order to reduce confusion regarding diffuse cirrus emission, BeeP's data model includes a description of the background emission surrounding each source, and it adjusts the confidence in the source parameter extraction based on the statistical properties of the spatial distribution of the background emission. BeeP produces the following three new sets of parameters for each source: (a) fits to a modified blackbody (MBB) thermal emission model of the source; (b) SED-independent source flux densities at each frequency considered; and (c) fits to an MBB model of the background in which the source is embedded. BeeP also calculates, for each source, a reliability parameter, which takes into account confusion due to the surrounding cirrus. This parameter can be used to extract sub-samples of high-frequency sources with statistically well-understood properties. We define a high-reliability subset (BeeP/base), containing 26 083 sources (54.1% of the total PCCS2 catalogue), the majority of which have no information on reliability in the PCCS2. We describe the characteristics of this specific high-quality subset of PCCS2 and its validation against other data sets, specifically for: the sub-sample of PCCS2 located in low-cirrus areas; the Planck Catalogue of Galactic Cold Clumps; the Herschel GAMA15-field catalogue; and the temperature-and spectral-index-reconstructed dust maps obtained with Planck's Generalized Needlet Internal Linear Combination method. The results of the BeeP extension of PCCS2, which are made publicly available via the Planck Legacy Archive, will enable the study of the thermal properties of well-defined samples of compact Galactic and extragalactic dusty sources.
- Published
- 2020
6. Planck 2018 results. V. CMB power spectra and likelihoods
- Author
-
Planck Collaboration, Aghanim, N., Akrami, Y., Ashdown, M., Aumont, J., Baccigalupi, C., Ballardini, M., Banday, A. J., Barreiro, R. B., Bartolo, N., Basak, S., Benabed, K., Bernard, J. -P., Bersanelli, M., Bielewicz, P., Bock, J. J., Bond, J. R., Borrill, J., Bouchet, F. R., Boulanger, F., Bucher, M., Burigana, C., Butler, R. C., Calabrese, E., Cardoso, J. -F., Carron, J., Casaponsa, B., Challinor, A., Chiang, H. C., Colombo, L. P. L., Combet, C., Crill, B. P., Cuttaia, F., de Bernardis, P., de Rosa, A., de Zotti, G., Delabrouille, J., Delouis, J. -M., Di Valentino, E., Diego, J. M., Doré, O., Douspis, M., Ducout, A., Dupac, X., Dusini, S., Efstathiou, G., Elsner, F., Enßlin, T. A., Eriksen, H. K., Fantaye, Y., Fernandez-Cobos, R., Finelli, F., Frailis, M., Fraisse, A. A., Franceschi, E., Frolov, A., Galeotta, S., Galli, S., Ganga, K., Génova-Santos, R. T., Gerbino, M., Ghosh, T., Giraud-Héraud, Y., González-Nuevo, J., Górski, K. M., Gratton, S., Gruppuso, A., Gudmundsson, J. E., Hamann, J., Handley, W., Hansen, F. K., Herranz, D., Hivon, E., Huang, Z., Jaffe, A. H., Jones, W. C., Keihänen, E., Keskitalo, R., Kiiveri, K., Kim, J., Kisner, T. S., Krachmalnicoff, N., Kunz, M., Kurki-Suonio, H., Lagache, G., Lamarre, J. -M., Lasenby, A., Lattanzi, M., Lawrence, C. R., Jeune, M. Le, Levrier, F., Lewis, A., Liguori, M., Lilje, P. B., Lilley, M., Lindholm, V., López-Caniego, M., Lubin, P. M., Ma, Y. -Z., Macías-Pérez, J. F., Maggio, G., Maino, D., Mandolesi, N., Mangilli, A., Marcos-Caballero, A., Maris, M., Martin, P. G., Martínez-González, E., Matarrese, S., Mauri, N., McEwen, J. D., Meinhold, P. R., Melchiorri, A., Mennella, A., Migliaccio, M., Millea, M., Miville-Deschênes, M. -A., Molinari, D., Moneti, A., Montier, L., Morgante, G., Moss, A., Natoli, P., Nørgaard-Nielsen, H. U., Pagano, L., Paoletti, D., Partridge, B., Patanchon, G., Peiris, H. V., Perrotta, F., Pettorino, V., Piacentini, F., Polenta, G., Puget, J. -L., Rachen, J. P., Reinecke, M., Remazeilles, M., Renzi, A., Rocha, G., Rosset, C., Roudier, G., Rubiño-Martín, J. A., Ruiz-Granados, B., Salvati, L., Sandri, M., Savelainen, M., Scott, D., Shellard, E. P. S., Sirignano, C., Sirri, G., Spencer, L. D., Sunyaev, R., Suur-Uski, A. -S., Tauber, J. A., Tavagnacco, D., Tenti, M., Toffolatti, L., Tomasi, M., Trombetti, T., Valiviita, J., Van Tent, B., Vielva, P., Villa, F., Vittorio, N., Wandelt, B. D., Wehus, I. K., Zacchei, A., and Zonca, A.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
This paper describes the 2018 Planck CMB likelihoods, following a hybrid approach similar to the 2015 one, with different approximations at low and high multipoles, and implementing several methodological and analysis refinements. With more realistic simulations, and better correction and modelling of systematics, we can now make full use of the High Frequency Instrument polarization data. The low-multipole 100x143 GHz EE cross-spectrum constrains the reionization optical-depth parameter $\tau$ to better than 15% (in combination with with the other low- and high-$\ell$ likelihoods). We also update the 2015 baseline low-$\ell$ joint TEB likelihood based on the Low Frequency Instrument data, which provides a weaker $\tau$ constraint. At high multipoles, a better model of the temperature-to-polarization leakage and corrections for the effective calibrations of the polarization channels (polarization efficiency or PE) allow us to fully use the polarization spectra, improving the constraints on the $\Lambda$CDM parameters by 20 to 30% compared to TT-only constraints. Tests on the modelling of the polarization demonstrate good consistency, with some residual modelling uncertainties, the accuracy of the PE modelling being the main limitation. Using our various tests, simulations, and comparison between different high-$\ell$ implementations, we estimate the consistency of the results to be better than the 0.5$\sigma$ level. Minor curiosities already present before (differences between $\ell$<800 and $\ell$>800 parameters or the preference for more smoothing of the $C_\ell$ peaks) are shown to be driven by the TT power spectrum and are not significantly modified by the inclusion of polarization. Overall, the legacy Planck CMB likelihoods provide a robust tool for constraining the cosmological model and represent a reference for future CMB observations. (Abridged), Comment: Revised to match version published in Astronomy & Astrophysics
- Published
- 2019
- Full Text
- View/download PDF
7. Planck 2018 results. VII. Isotropy and Statistics of the CMB
- Author
-
Planck Collaboration, Akrami, Y., Ashdown, M., Aumont, J., Baccigalupi, C., Ballardini, M., Banday, A. J., Barreiro, R. B., Bartolo, N., Basak, S., Benabed, K., Bersanelli, M., Bielewicz, P., Bock, J. J., Bond, J. R., Borrill, J., Bouchet, F. R., Boulanger, F., Bucher, M., Burigana, C., Butler, R. C., Calabrese, E., Cardoso, J. -F., Casaponsa, B., Chiang, H. C., Colombo, L. P. L., Combet, C., Contreras, D., Crill, B. P., de Bernardis, P., de Zotti, G., Delabrouille, J., Delouis, J. -M., Di Valentino, E., Diego, J. M., Doré, O., Douspis, M., Ducout, A., Dupac, X., Efstathiou, G., Elsner, F., Enßlin, T. A., Eriksen, H. K., Fantaye, Y., Fernandez-Cobos, R., Finelli, F., Frailis, M., Fraisse, A. A., Franceschi, E., Frolov, A., Galeotta, S., Galli, S., Ganga, K., Génova-Santos, R. T., Gerbino, M., Ghosh, T., González-Nuevo, J., Górski, K. M., Gruppuso, A., Gudmundsson, J. E., Hamann, J., Handley, W., Hansen, F. K., Herranz, D., Hivon, E., Huang, Z., Jaffe, A. H., Jones, W. C., Keihänen, E., Keskitalo, R., Kiiveri, K., Kim, J., Krachmalnicoff, N., Kunz, M., Kurki-Suonio, H., Lagache, G., Lamarre, J. -M., Lasenby, A., Lattanzi, M., Lawrence, C. R., Jeune, M. Le, Levrier, F., Liguori, M., Lilje, P. B., Lindholm, V., López-Caniego, M., Ma, Y. -Z., Macías-Pérez, J. F., Maggio, G., Maino, D., Mandolesi, N., Mangilli, A., Marcos-Caballero, A., Maris, M., Martin, P. G., Martínez-González, E., Matarrese, S., Mauri, N., McEwen, J. D., Meinhold, P. R., Mennella, A., Migliaccio, M., Miville-Deschênes, M. -A., Molinari, D., Moneti, A., Montier, L., Morgante, G., Moss, A., Natoli, P., Pagano, L., Paoletti, D., Partridge, B., Perrotta, F., Pettorino, V., Piacentini, F., Polenta, G., Puget, J. -L., Rachen, J. P., Reinecke, M., Remazeilles, M., Renzi, A., Rocha, G., Rosset, C., Roudier, G., Rubiño-Martín, J. A., Ruiz-Granados, B., Salvati, L., Savelainen, M., Scott, D., Shellard, E. P. S., Sirignano, C., Sunyaev, R., Suur-Uski, A. -S., Tauber, J. A., Tavagnacco, D., Tenti, M., Toffolatti, L., Tomasi, M., Trombetti, T., Valenziano, L., Valiviita, J., Van Tent, B., Vielva, P., Villa, F., Vittorio, N., Wandelt, B. D., Wehus, I. K., Zacchei, A., Zibin, J. P., and Zonca, A.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Analysis of the Planck 2018 data set indicates that the statistical properties of the cosmic microwave background (CMB) temperature anisotropies are in excellent agreement with previous studies using the 2013 and 2015 data releases. In particular, they are consistent with the Gaussian predictions of the $\Lambda$CDM cosmological model, yet also confirm the presence of several so-called "anomalies" on large angular scales. The novelty of the current study, however, lies in being a first attempt at a comprehensive analysis of the statistics of the polarization signal over all angular scales, using either maps of the Stokes parameters, $Q$ and $U$, or the $E$-mode signal derived from these using a new methodology (which we describe in an appendix). Although remarkable progress has been made in reducing the systematic effects that contaminated the 2015 polarization maps on large angular scales, it is still the case that residual systematics (and our ability to simulate them) can limit some tests of non-Gaussianity and isotropy. However, a detailed set of null tests applied to the maps indicates that these issues do not dominate the analysis on intermediate and large angular scales (i.e., $\ell \lesssim 400$). In this regime, no unambiguous detections of cosmological non-Gaussianity, or of anomalies corresponding to those seen in temperature, are claimed. Notably, the stacking of CMB polarization signals centred on the positions of temperature hot and cold spots exhibits excellent agreement with the $\Lambda$CDM cosmological model, and also gives a clear indication of how Planck provides state-of-the-art measurements of CMB temperature and polarization on degree scales., Comment: Paper VII of the Planck 2018 release, revised to closely match version published in Astronomy and Astrophysics
- Published
- 2019
- Full Text
- View/download PDF
8. Planck 2018 results. IX. Constraints on primordial non-Gaussianity
- Author
-
Planck Collaboration, Akrami, Y., Arroja, F., Ashdown, M., Aumont, J., Baccigalupi, C., Ballardini, M., Banday, A. J., Barreiro, R. B., Bartolo, N., Basak, S., Benabed, K., Bernard, J. -P., Bersanelli, M., Bielewicz, P., Bond, J. R., Borrill, J., Bouchet, F. R., Bucher, M., Burigana, C., Butler, R. C., Calabrese, E., Cardoso, J. -F., Casaponsa, B., Challinor, A., Chiang, H. C., Colombo, L. P. L., Combet, C., Crill, B. P., Cuttaia, F., de Bernardis, P., de Rosa, A., de Zotti, G., Delabrouille, J., Delouis, J. -M., Di Valentino, E., Diego, J. M., Doré, O., Douspis, M., Ducout, A., Dupac, X., Dusini, S., Efstathiou, G., Elsner, F., Enßlin, T. A., Eriksen, H. K., Fantaye, Y., Fergusson, J., Fernandez-Cobos, R., Finelli, F., Frailis, M., Fraisse, A. A., Franceschi, E., Frolov, A., Galeotta, S., Ganga, K., Génova-Santos, R. T., Gerbino, M., González-Nuevo, J., Górski, K. M., Gratton, S., Gruppuso, A., Gudmundsson, J. E., Hamann, J., Handley, W., Hansen, F. K., Herranz, D., Hivon, E., Huang, Z., Jaffe, A. H., Jones, W. C., Jung, G., Keihänen, E., Keskitalo, R., Kiiveri, K., Kim, J., Krachmalnicoff, N., Kunz, M., Kurki-Suonio, H., Lamarre, J. -M., Lasenby, A., Lattanzi, M., Lawrence, C. R., Jeune, M. Le, Levrier, F., Lewis, A., Liguori, M., Lilje, P. B., Lindholm, V., López-Caniego, M., Ma, Y. -Z., Macías-Pérez, J. F., Maggio, G., Maino, D., Mandolesi, N., Marcos-Caballero, A., Maris, M., Martin, P. G., Martínez-González, E., Matarrese, S., Mauri, N., McEwen, J. D., Meerburg, P. D., Meinhold, P. R., Melchiorri, A., Mennella, A., Migliaccio, M., Miville-Deschênes, M. -A., Molinari, D., Moneti, A., Montier, L., Morgante, G., Moss, A., Münchmeyer, M., Natoli, P., Oppizzi, F., Pagano, L., Paoletti, D., Partridge, B., Patanchon, G., Perrotta, F., Pettorino, V., Piacentini, F., Polenta, G., Puget, J. -L., Rachen, J. P., Racine, B., Reinecke, M., Remazeilles, M., Renzi, A., Rocha, G., Rubiño-Martín, J. A., Ruiz-Granados, B., Salvati, L., Savelainen, M., Scott, D., Shellard, E. P. S., Shiraishi, M., Sirignano, C., Sirri, G., Smith, K., Spencer, L. D., Stanco, L., Sunyaev, R., Suur-Uski, A. -S., Tauber, J. A., Tavagnacco, D., Tenti, M., Toffolatti, L., Tomasi, M., Trombetti, T., Valiviita, J., Van Tent, B., Vielva, P., Villa, F., Vittorio, N., Wandelt, B. D., Wehus, I. K., Zacchei, A., and Zonca, A.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics ,General Relativity and Quantum Cosmology ,High Energy Physics - Phenomenology ,High Energy Physics - Theory - Abstract
We analyse the Planck full-mission cosmic microwave background (CMB) temperature and E-mode polarization maps to obtain constraints on primordial non-Gaussianity (NG). We compare estimates obtained from separable template-fitting, binned, and modal bispectrum estimators, finding consistent values for the local, equilateral, and orthogonal bispectrum amplitudes. Our combined temperature and polarization analysis produces the following results: f_NL^local = -0.9 +\- 5.1; f_NL^equil = -26 +\- 47; and f_NL^ortho = - 38 +\- 24 (68%CL, statistical). These results include the low-multipole (4 <= l < 40) polarization data, not included in our previous analysis, pass an extensive battery of tests, and are stable with respect to our 2015 measurements. Polarization bispectra display a significant improvement in robustness; they can now be used independently to set NG constraints. We consider a large number of additional cases, e.g. scale-dependent feature and resonance bispectra, isocurvature primordial NG, and parity-breaking models, where we also place tight constraints but do not detect any signal. The non-primordial lensing bispectrum is detected with an improved significance compared to 2015, excluding the null hypothesis at 3.5 sigma. We present model-independent reconstructions and analyses of the CMB bispectrum. Our final constraint on the local trispectrum shape is g_NLl^local = (-5.8 +\-6.5) x 10^4 (68%CL, statistical), while constraints for other trispectra are also determined. We constrain the parameter space of different early-Universe scenarios, including general single-field models of inflation, multi-field and axion field parity-breaking models. Our results provide a high-precision test for structure-formation scenarios, in complete agreement with the basic picture of the LambdaCDM cosmology regarding the statistics of the initial conditions (abridged)., Comment: 50 pages, 20 figures
- Published
- 2019
9. Planck 2018 results
- Author
-
Akrami, Y, Arroja, F, Ashdown, M, Aumont, J, Baccigalupi, C, Ballardini, M, Banday, AJ, Barreiro, RB, Bartolo, N, Basak, S, Benabed, K, Bernard, J-P, Bersanelli, M, Bielewicz, P, Bond, JR, Borrill, J, Bouchet, FR, Bucher, M, Burigana, C, Butler, RC, Calabrese, E, Cardoso, J-F, Casaponsa, B, Challinor, A, Chiang, HC, Colombo, LPL, Combet, C, Crill, BP, Cuttaia, F, de Bernardis, P, de Rosa, A, de Zotti, G, Delabrouille, J, Delouis, J-M, Di Valentino, E, Diego, JM, Doré, O, Douspis, M, Ducout, A, Dupac, X, Dusini, S, Efstathiou, G, Elsner, F, Enßlin, TA, Eriksen, HK, Fantaye, Y, Fergusson, J, Fernandez-Cobos, R, Finelli, F, Frailis, M, Fraisse, AA, Franceschi, E, Frolov, A, Galeotta, S, Galli, S, Ganga, K, Génova-Santos, RT, Gerbino, M, González-Nuevo, J, Górski, KM, Gratton, S, Gruppuso, A, Gudmundsson, JE, Hamann, J, Handley, W, Hansen, FK, Herranz, D, Hivon, E, Huang, Z, Jaffe, AH, Jones, WC, Jung, G, Keihänen, E, Keskitalo, R, Kiiveri, K, Kim, J, Krachmalnicoff, N, Kunz, M, Kurki-Suonio, H, Lamarre, J-M, Lasenby, A, Lattanzi, M, Lawrence, CR, Le Jeune, M, Levrier, F, Lewis, A, Liguori, M, Lilje, PB, Lindholm, V, López-Caniego, M, Ma, Y-Z, Macías-Pérez, JF, Maggio, G, Maino, D, Mandolesi, N, Marcos-Caballero, A, Maris, M, Martin, PG, Martínez-González, E, and Matarrese, S
- Subjects
Particle and High Energy Physics ,Physical Sciences ,cosmic background radiation ,cosmology: observations ,cosmology: theory ,early Universe ,inflation ,methods: data analysis ,astro-ph.CO ,gr-qc ,hep-ph ,hep-th ,Astronomical and Space Sciences ,Astronomy & Astrophysics ,Astronomical sciences ,Particle and high energy physics ,Space sciences - Abstract
We analyse the Planck full-mission cosmic microwave background (CMB) temperature and E-mode polarization maps to obtain constraints on primordial non-Gaussianity (NG). We compare estimates obtained from separable template-fitting, binned, and optimal modal bispectrum estimators, finding consistent values for the local, equilateral, and orthogonal bispectrum amplitudes. Our combined temperature and polarization analysis produces the following final results: flocalNL= -0.9 ± 5.1; fequilNL= -26 ± 47; and forthoNL= -38 ± 24 (68% CL, statistical). These results include low-multipole (4 ≤ ℓ < 40) polarization data that are not included in our previous analysis. The results also pass an extensive battery of tests (with additional tests regarding foreground residuals compared to 2015), and they are stable with respect to our 2015 measurements (with small fluctuations, at the level of a fraction of a standard deviation, which is consistent with changes in data processing). Polarizationonly bispectra display a significant improvement in robustness; they can now be used independently to set primordial NG constraints with a sensitivity comparable to WMAP temperature-based results and they give excellent agreement. In addition to the analysis of the standard local, equilateral, and orthogonal bispectrum shapes, we consider a large number of additional cases, such as scale-dependent feature and resonance bispectra, isocurvature primordial NG, and parity-breaking models, where we also place tight constraints but do not detect any signal. The nonprimordial lensing bispectrum is, however, detected with an improved significance compared to 2015, excluding the null hypothesis at 3.5σ. Beyond estimates of individual shape amplitudes, we also present model-independent reconstructions and analyses of the Planck CMB bispectrum. Our final constraint on the local primordial trispectrum shape is glocalNL= (-5.8 ± 6.5) × 104(68% CL, statistical), while constraints for other trispectrum shapes are also determined. Exploiting the tight limits on various bispectrum and trispectrum shapes, we constrain the parameter space of different early-Universe scenarios that generate primordial NG, including general single-field models of inflation, multi-field models (e.g. curvaton models), models of inflation with axion fields producing parity-violation bispectra in the tensor sector, and inflationary models involving vector-like fields with directionally-dependent bispectra. Our results provide a high-precision test for structure-formation scenarios, showing complete agreement with the basic picture of the CDM cosmology regarding the statistics of the initial conditions, with cosmic structures arising from adiabatic, passive, Gaussian, and primordial seed perturbations.
- Published
- 2020
10. Planck 2018 results
- Author
-
Aghanim, N, Akrami, Y, Ashdown, M, Aumont, J, Baccigalupi, C, Ballardini, M, Banday, AJ, Barreiro, RB, Bartolo, N, Basak, S, Benabed, K, Bernard, J-P, Bersanelli, M, Bielewicz, P, Bock, JJ, Bond, JR, Borrill, J, Bouchet, FR, Boulanger, F, Bucher, M, Burigana, C, Butler, RC, Calabrese, E, Cardoso, J-F, Carron, J, Casaponsa, B, Challinor, A, Chiang, HC, Colombo, LPL, Combet, C, Crill, BP, Cuttaia, F, de Bernardis, P, de Rosa, A, de Zotti, G, Delabrouille, J, Delouis, J-M, Di Valentino, E, Diego, JM, Doré, O, Douspis, M, Ducout, A, Dupac, X, Dusini, S, Efstathiou, G, Elsner, F, Enßlin, TA, Eriksen, HK, Fantaye, Y, Fernandez-Cobos, R, Finelli, F, Frailis, M, Fraisse, AA, Franceschi, E, Frolov, A, Galeotta, S, Galli, S, Ganga, K, Génova-Santos, RT, Gerbino, M, Ghosh, T, Giraud-Héraud, Y, González-Nuevo, J, Górski, KM, Gratton, S, Gruppuso, A, Gudmundsson, JE, Hamann, J, Handley, W, Hansen, FK, Herranz, D, Hivon, E, Huang, Z, Jaffe, AH, Jones, WC, Keihänen, E, Keskitalo, R, Kiiveri, K, Kim, J, Kisner, TS, Krachmalnicoff, N, Kunz, M, Kurki-Suonio, H, Lagache, G, Lamarre, J-M, Lasenby, A, Lattanzi, M, Lawrence, CR, Le Jeune, M, Levrier, F, Lewis, A, Liguori, M, Lilje, PB, Lilley, M, Lindholm, V, López-Caniego, M, Lubin, PM, Ma, Y-Z, Macías-Pérez, JF, and Maggio, G
- Subjects
Space Sciences ,Particle and High Energy Physics ,Astronomical Sciences ,Physical Sciences ,Generic health relevance ,cosmic background radiation ,cosmology: observations ,cosmological parameters ,methods: data analysis ,astro-ph.CO ,Astronomical and Space Sciences ,Astronomy & Astrophysics ,Astronomical sciences ,Particle and high energy physics ,Space sciences - Abstract
We describe the legacy Planck cosmic microwave background (CMB) likelihoods derived from the 2018 data release. The overall approach is similar in spirit to the one retained for the 2013 and 2015 data release, with a hybrid method using different approximations at low (ℓ < 30) and high (ℓ ≥ 30) multipoles, implementing several methodological and data-analysis refinements compared to previous releases. With more realistic simulations, and better correction and modelling of systematic effects, we can now make full use of the CMB polarization observed in the High Frequency Instrument (HFI) channels. The low-multipole EE cross-spectra from the 100 GHz and 143 GHz data give a constraint on the λCDM reionization optical-depth parameter τ to better than 15% (in combination with the TT low-ℓ data and the high-ℓ temperature and polarization data), tightening constraints on all parameters with posterior distributions correlated with τ. We also update the weaker constraint on τ from the joint TEB likelihood using the Low Frequency Instrument (LFI) channels, which was used in 2015 as part of our baseline analysis. At higher multipoles, the CMB temperature spectrum and likelihood are very similar to previous releases. A better model of the temperature-to-polarization leakage and corrections for the effective calibrations of the polarization channels (i.e., the polarization efficiencies) allow us to make full use of polarization spectra, improving the λCDM constraints on the parameters θMC, ωc, ωb, and H0 by more than 30%, and ns by more than 20% compared to TT-only constraints. Extensive tests on the robustness of the modelling of the polarization data demonstrate good consistency, with some residual modelling uncertainties. At high multipoles, we are now limited mainly by the accuracy of the polarization efficiency modelling. Using our various tests, simulations, and comparison between different high-multipole likelihood implementations, we estimate the consistency of the results to be better than the 0.5σ level on the λCDM parameters, as well as classical single-parameter extensions for the joint likelihood (to be compared to the 0.3σ levels we achieved in 2015 for the temperature data alone on λCDM only). Minor curiosities already present in the previous releases remain, such as the differences between the best-fit λCDM parameters for the ℓ < 800 and ℓ > 800 ranges of the power spectrum, or the preference for more smoothing of the power-spectrum peaks than predicted in λCDM fits. These are shown to be driven by the temperature power spectrum and are not significantly modified by the inclusion of the polarization data. Overall, the legacy Planck CMB likelihoods provide a robust tool for constraining the cosmological model and represent a reference for future CMB observations.
- Published
- 2020
11. Planck 2018 results. IV. Diffuse component separation
- Author
-
Planck Collaboration, Akrami, Y., Ashdown, M., Aumont, J., Baccigalupi, C., Ballardini, M., Banday, A. J., Barreiro, R. B., Bartolo, N., Basak, S., Benabed, K., Bersanelli, M., Bielewicz, P., Bond, J. R., Borrill, J., Bouchet, F. R., Boulanger, F., Bucher, M., Burigana, C., Calabrese, E., Cardoso, J. -F., Carron, J., Casaponsa, B., Challinor, A., Colombo, L. P. L., Combet, C., Crill, B. P., Cuttaia, F., de Bernardis, P., de Rosa, A., de Zotti, G., Delabrouille, J., Delouis, J. -M., Di Valentino, E., Dickinson, C., Diego, J. M., Donzelli, S., Doré, O., Ducout, A., Dupac, X., Efstathiou, G., Elsner, F., Enßlin, T. A., Eriksen, H. K., Falgarone, E., Fernandez-Cobos, R., Finelli, F., Forastieri, F., Frailis, M., Fraisse, A. A., Franceschi, E., Frolov, A., Galeotta, S., Galli, S., Ganga, K., Génova-Santos, R. T., Gerbino, M., Ghosh, T., González-Nuevo, J., Górski, K. M., Gratton, S., Gruppuso, A., Gudmundsson, J. E., Handley, W., Hansen, F. K., Helou, G., Herranz, D., Huang, Z., Jaffe, A. H., Karakci, A., Keihänen, E., Keskitalo, R., Kiiveri, K., Kim, J., Kisner, T. S., Krachmalnicoff, N., Kunz, M., Kurki-Suonio, H., Lagache, G., Lamarre, J. -M., Lasenby, A., Lattanzi, M., Lawrence, C. R., Jeune, M. Le, Levrier, F., Liguori, M., Lilje, P. B., Lindholm, V., López-Caniego, M., Lubin, P. M., Ma, Y. -Z., Macías-Pérez, J. F., Maggio, G., Maino, D., Mandolesi, N., Mangilli, A., Marcos-Caballero, A., Martin, P. G., Martínez-González, E., Matarrese, S., Mauri, N., McEwen, J. D., Meinhold, P. R., Melchiorri, A., Mennella, A., Migliaccio, M., Miville-Deschênes, M. -A., Molinari, D., Moneti, A., Montier, L., Morgante, G., Natoli, P., Oppizzi, F., Pagano, L., Paoletti, D., Partridge, B., Peel, M., Pettorino, V., Piacentini, F., Polenta, G., Puget, J. -L., Rachen, J. P., Reinecke, M., Remazeilles, M., Renzi, A., Rocha, G., Roudier, G., Rubiño-Martín, J. A., Ruiz-Granados, B., Salvati, L., Sandri, M., Savelainen, M., Scott, D., Seljebotn, D. S., Sirignano, C., Spencer, L. D., Suur-Uski, A. -S., Tauber, J. A., Tavagnacco, D., Tenti, M., Thommesen, H., Toffolatti, L., Tomasi, M., Trombetti, T., Valiviita, J., Van Tent, B., Vielva, P., Villa, F., Vittorio, N., Wandelt, B. D., Wehus, I. K., Zacchei, A., and Zonca, A.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present full-sky maps of the cosmic microwave background (CMB) and polarized synchrotron and thermal dust emission, derived from the third set of Planck frequency maps. These products have significantly lower contamination from instrumental systematic effects than previous versions. The methodologies used to derive these maps follow those described in earlier papers, adopting four methods (Commander, NILC, SEVEM, and SMICA) to extract the CMB component, as well as three methods (Commander, GNILC, and SMICA) to extract astrophysical components. Our revised CMB temperature maps agree with corresponding products in the Planck 2015 delivery, whereas the polarization maps exhibit significantly lower large-scale power, reflecting the improved data processing described in companion papers; however, the noise properties of the resulting data products are complicated, and the best available end-to-end simulations exhibit relative biases with respect to the data at the few percent level. Using these maps, we are for the first time able to fit the spectral index of thermal dust independently over 3 degree regions. We derive a conservative estimate of the mean spectral index of polarized thermal dust emission of beta_d = 1.55 +/- 0.05, where the uncertainty marginalizes both over all known systematic uncertainties and different estimation techniques. For polarized synchrotron emission, we find a mean spectral index of beta_s = -3.1 +/- 0.1, consistent with previously reported measurements. We note that the current data processing does not allow for construction of unbiased single-bolometer maps, and this limits our ability to extract CO emission and correlated components. The foreground results for intensity derived in this paper therefore do not supersede corresponding Planck 2015 products. For polarization the new results supersede the corresponding 2015 products in all respects., Comment: 74 pages, A&A, 641, A4
- Published
- 2018
- Full Text
- View/download PDF
12. Planck 2018 results. III. High Frequency Instrument data processing and frequency maps
- Author
-
Planck Collaboration, Aghanim, N., Akrami, Y., Ashdown, M., Aumont, J., Baccigalupi, C., Ballardini, M., Banday, A. J., Barreiro, R. B., Bartolo, N., Basak, S., Benabed, K., Bernard, J. -P., Bersanelli, M., Bielewicz, P., Bond, J. R., Borrill, J., Bouchet, F. R., Boulanger, F., Bucher, M., Burigana, C., Calabrese, E., Cardoso, J. -F., Carron, J., Challinor, A., Chiang, H. C., Colombo, L. P. L., Combet, C., Couchot, F., Crill, B. P., Cuttaia, F., de Bernardis, P., de Rosa, A., de Zotti, G., Delabrouille, J., Delouis, J. -M., Di Valentino, E., Diego, J. M., Doré, O., Douspis, M., Ducout, A., Dupac, X., Efstathiou, G., Elsner, F., Enßlin, T. A., Eriksen, H. K., Falgarone, E., Fantaye, Y., Finelli, F., Frailis, M., Fraisse, A. A., Franceschi, E., Frolov, A., Galeotta, S., Galli, S., Ganga, K., Génova-Santos, R. T., Gerbino, M., Ghosh, T., González-Nuevo, J., Górski, K. M., Gratton, S., Gruppuso, A., Gudmundsson, J. E., Handley, W., Hansen, F. K., Henrot-Versillé, S., Herranz, D., Hivon, E., Huang, Z., Jaffe, A. H., Jones, W. C., Karakci, A., Keihänen, E., Keskitalo, R., Kiiveri, K., Kim, J., Kisner, T. S., Krachmalnicoff, N., Kunz, M., Kurki-Suonio, H., Lagache, G., Lamarre, J. -M., Lasenby, A., Lattanzi, M., Lawrence, C. R., Levrier, F., Liguori, M., Lilje, P. B., Lindholm, V., López-Caniego, M., Ma, Y. -Z., Macías-Pérez, J. F., Maggio, G., Maino, D., Mandolesi, N., Mangilli, A., Martin, P. G., Martínez-González, E., Matarrese, S., Mauri, N., McEwen, J. D., Melchiorri, A., Mennella, A., Migliaccio, M., Miville-Deschênes, M. -A., Molinari, D., Moneti, A., Montier, L., Morgante, G., Moss, A., Mottet, S., Natoli, P., Pagano, L., Paoletti, D., Partridge, B., Patanchon, G., Patrizii, L., Perdereau, O., Perrotta, F., Pettorino, V., Piacentini, F., Puget, J. -L., Rachen, J. P., Reinecke, M., Remazeilles, M., Renzi, A., Rocha, G., Roudier, G., Salvati, L., Sandri, M., Savelainen, M., Scott, D., Sirignano, C., Sirri, G., Spencer, L. D., Sunyaev, R., Suur-Uski, A. -S., Tauber, J. A., Tavagnacco, D., Tenti, M., Toffolatti, L., Tomasi, M., Tristram, M., Trombetti, T., Valiviita, J., Vansyngel, F., Van Tent, B., Vibert, L., Vielva, P., Villa, F., Vittorio, N., Wandelt, B. D., Wehus, I. K., and Zonca, A.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
This paper presents the High Frequency Instrument (HFI) data processing procedures for the Planck 2018 release. Major improvements in mapmaking have been achieved since the previous 2015 release. They enabled the first significant measurement of the reionization optical depth parameter using HFI data. This paper presents an extensive analysis of systematic effects, including the use of simulations to facilitate their removal and characterize the residuals. The polarized data, which presented a number of known problems in the 2015 Planck release, are very significantly improved. Calibration, based on the CMB dipole, is now extremely accurate and in the frequency range 100 to 353 GHz reduces intensity-to-polarization leakage caused by calibration mismatch. The Solar dipole direction has been determined in the three lowest HFI frequency channels to within one arc minute, and its amplitude has an absolute uncertainty smaller than $0.35\mu$K, an accuracy of order $10^{-4}$. This is a major legacy from the HFI for future CMB experiments. The removal of bandpass leakage has been improved by extracting the bandpass-mismatch coefficients for each detector as part of the mapmaking process; these values in turn improve the intensity maps. This is a major change in the philosophy of "frequency maps", which are now computed from single detector data, all adjusted to the same average bandpass response for the main foregrounds. Simulations reproduce very well the relative gain calibration of detectors, as well as drifts within a frequency induced by the residuals of the main systematic effect. Using these simulations, we measure and correct the small frequency calibration bias induced by this systematic effect at the $10^{-4}$ level. There is no detectable sign of a residual calibration bias between the first and second acoustic peaks in the CMB channels, at the $10^{-3}$ level., Comment: Accepted for publication on A&A (AA/2018/32909)
- Published
- 2018
- Full Text
- View/download PDF
13. Planck 2018 results. XII. Galactic astrophysics using polarized dust emission
- Author
-
Planck Collaboration, Aghanim, N., Akrami, Y., Alves, M. I. R., Ashdown, M., Aumont, J., Baccigalupi, C., Ballardini, M., Banday, A. J., Barreiro, R. B., Bartolo, N., Basak, S., Benabed, K., Bernard, J. -P., Bersanelli, M., Bielewicz, P., Bock, J. J., Bond, J. R., Borrill, J., Bouchet, F. R., Boulanger, F., Bracco, A., Bucher, M., Burigana, C., Calabrese, E., Cardoso, J. -F., Carron, J., Chary, R. -R., Chiang, H. C., Colombo, L. P. L., Combet, C., Crill, B. P., Cuttaia, F., de Bernardis, P., de Zotti, G., Delabrouille, J., Delouis, J. -M., Di Valentino, E., Dickinson, C., Diego, J. M., Doré, O., Douspis, M., Ducout, A., Dupac, X., Efstathiou, G., Elsner, F., Enßlin, T. A., Eriksen, H. K., Falgarone, E., Fantaye, Y., Fernandez-Cobos, R., Ferrière, K., Finelli, F., Forastieri, F., Frailis, M., Fraisse, A. A., Franceschi, E., Frolov, A., Galeotta, S., Galli, S., Ganga, K., Génova-Santos, R. T., Gerbino, M., Ghosh, T., González-Nuevo, J., Górski, K. M., Gratton, S., Green, G., Gruppuso, A., Gudmundsson, J. E., Guillet, V., Handley, W., Hansen, F. K., Helou, G., Herranz, D., Hivon, E., Huang, Z., Jaffe, A. H., Jones, W. C., Keihänen, E., Keskitalo, R., Kiiveri, K., Kim, J., Krachmalnicoff, N., Kunz, M., Kurki-Suonio, H., Lagache, G., Lamarre, J. -M., Lasenby, A., Lattanzi, M., Lawrence, C. R., Jeune, M. Le, Levrier, F., Liguori, M., Lilje, P. B., Lindholm, V., López-Caniego, M., Lubin, P. M., Ma, Y. -Z., Macías-Pérez, J. F., Maggio, G., Maino, D., Mandolesi, N., Mangilli, A., Marcos-Caballero, A., Maris, M., Martin, P. G., Martínez-González, E., Matarrese, S., Mauri, N., McEwen, J. D., Melchiorri, A., Mennella, A., Migliaccio, M., Miville-Deschênes, M. -A., Molinari, D., Moneti, A., Montier, L., Morgante, G., Moss, A., Natoli, P., Pagano, L., Paoletti, D., Patanchon, G., Perrotta, F., Pettorino, V., Piacentini, F., Polastri, L., Polenta, G., Puget, J. -L., Rachen, J. P., Reinecke, M., Remazeilles, M., Renzi, A., Ristorcelli, I., Rocha, G., Rosset, C., Roudier, G., Rubiño-Martín, J. A., Ruiz-Granados, B., Salvati, L., Sandri, M., Savelainen, M., Scott, D., Sirignano, C., Sunyaev, R., Suur-Uski, A. -S., Tauber, J. A., Tavagnacco, D., Tenti, M., Toffolatti, L., Tomasi, M., Trombetti, T., Valiviita, J., Vansyngel, F., Van Tent, B., Vielva, P., Villa, F., Vittorio, N., Wandelt, B. D., Wehus, I. K., Zacchei, A., and Zonca, A.
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
We present 353 GHz full-sky maps of the polarization fraction $p$, angle $\psi$, and dispersion of angles $S$ of Galactic dust thermal emission produced from the 2018 release of Planck data. We confirm that the mean and maximum of $p$ decrease with increasing $N_H$. The uncertainty on the maximum polarization fraction, $p_\mathrm{max}=22.0$% at 80 arcmin resolution, is dominated by the uncertainty on the zero level in total intensity. The observed inverse behaviour between $p$ and $S$ is interpreted with models of the polarized sky that include effects from only the topology of the turbulent Galactic magnetic field. Thus, the statistical properties of $p$, $\psi$, and $S$ mostly reflect the structure of the magnetic field. Nevertheless, we search for potential signatures of varying grain alignment and dust properties. First, we analyse the product map $S \times p$, looking for residual trends. While $p$ decreases by a factor of 3--4 between $N_H=10^{20}$ cm$^{-2}$ and $N_H=2\times 10^{22}$ cm$^{-2}$, $S \times p$ decreases by only about 25%, a systematic trend observed in both the diffuse ISM and molecular clouds. Second, we find no systematic trend of $S \times p$ with the dust temperature, even though in the diffuse ISM lines of sight with high $p$ and low $S$ tend to have colder dust. We also compare Planck data with starlight polarization in the visible at high latitudes. The agreement in polarization angles is remarkable. Two polarization emission-to-extinction ratios that characterize dust optical properties depend only weakly on $N_H$ and converge towards the values previously determined for translucent lines of sight. We determine an upper limit for the polarization fraction in extinction of 13%, compatible with the $p_\mathrm{max}$ observed in emission. These results provide strong constraints for models of Galactic dust in diffuse gas., Comment: Accepted for publication in Astronomy & Astrophysics
- Published
- 2018
- Full Text
- View/download PDF
14. Planck 2018 results. I. Overview and the cosmological legacy of Planck
- Author
-
Planck Collaboration, Akrami, Y., Arroja, F., Ashdown, M., Aumont, J., Baccigalupi, C., Ballardini, M., Banday, A. J., Barreiro, R. B., Bartolo, N., Basak, S., Battye, R., Benabed, K., Bernard, J. -P., Bersanelli, M., Bielewicz, P., Bock, J. J., Bond, J. R., Borrill, J., Bouchet, F. R., Boulanger, F., Bucher, M., Burigana, C., Butler, R. C., Calabrese, E., Cardoso, J. -F., Carron, J., Casaponsa, B., Challinor, A., Chiang, H. C., Colombo, L. P. L., Combet, C., Contreras, D., Crill, B. P., Cuttaia, F., de Bernardis, P., de Zotti, G., Delabrouille, J., Delouis, J. -M., Désert, F. -X., Di Valentino, E., Dickinson, C., Diego, J. M., Donzelli, S., Doré, O., Douspis, M., Ducout, A., Dupac, X., Efstathiou, G., Elsner, F., Enßlin, T. A., Eriksen, H. K., Falgarone, E., Fantaye, Y., Fergusson, J., Fernandez-Cobos, R., Finelli, F., Forastieri, F., Frailis, M., Franceschi, E., Frolov, A., Galeotta, S., Galli, S., Ganga, K., Génova-Santos, R. T., Gerbino, M., Ghosh, T., González-Nuevo, J., Górski, K. M., Gratton, S., Gruppuso, A., Gudmundsson, J. E., Hamann, J., Handley, W., Hansen, F. K., Helou, G., Herranz, D., Hivon, E., Huang, Z., Jaffe, A. H., Jones, W. C., Karakci, A., Keihänen, E., Keskitalo, R., Kiiveri, K., Kim, J., Kisner, T. S., Knox, L., Krachmalnicoff, N., Kunz, M., Kurki-Suonio, H., Lagache, G., Lamarre, J. -M., Langer, M., Lasenby, A., Lattanzi, M., Lawrence, C. R., Jeune, M. Le, Leahy, J. P., Lesgourgues, J., Levrier, F., Lewis, A., Liguori, M., Lilje, P. B., Lilley, M., Lindholm, V., López-Caniego, M., Lubin, P. M., Ma, Y. -Z., Macías-Pérez, J. F., Maggio, G., Maino, D., Mandolesi, N., Mangilli, A., Marcos-Caballero, A., Maris, M., Martin, P. G., Martínez-González, E., Matarrese, S., Mauri, N., McEwen, J. D., Meerburg, P. D., Meinhold, P. R., Melchiorri, A., Mennella, A., Migliaccio, M., Millea, M., Mitra, S., Miville-Deschênes, M. -A., Molinari, D., Moneti, A., Montier, L., Morgante, G., Moss, A., Mottet, S., Münchmeyer, M., Natoli, P., Nørgaard-Nielsen, H. U., Oxborrow, C. A., Pagano, L., Paoletti, D., Partridge, B., Patanchon, G., Pearson, T. J., Peel, M., Peiris, H. V., Perrotta, F., Pettorino, V., Piacentini, F., Polastri, L., Polenta, G., Puget, J. -L., Rachen, J. P., Reinecke, M., Remazeilles, M., Renzi, A., Rocha, G., Rosset, C., Roudier, G., Rubiño-Martín, J. A., Ruiz-Granados, B., Salvati, L., Sandri, M., Savelainen, M., Scott, D., Shellard, E. P. S., Shiraishi, M., Sirignano, C., Sirri, G., Spencer, L. D., Sunyaev, R., Suur-Uski, A. -S., Tauber, J. A., Tavagnacco, D., Tenti, M., Terenzi, L., Toffolatti, L., Tomasi, M., Trombetti, T., Valiviita, J., Van Tent, B., Vibert, L., Vielva, P., Villa, F., Vittorio, N., Wandelt, B. D., Wehus, I. K., White, M., White, S. D. M., Zacchei, A., and Zonca, A.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
The European Space Agency's Planck satellite, which was dedicated to studying the early Universe and its subsequent evolution, was launched on 14 May 2009. It scanned the microwave and submillimetre sky continuously between 12 August 2009 and 23 October 2013, producing deep, high-resolution, all-sky maps in nine frequency bands from 30 to 857GHz. This paper presents the cosmological legacy of Planck, which currently provides our strongest constraints on the parameters of the standard cosmological model and some of the tightest limits available on deviations from that model. The 6-parameter LCDM model continues to provide an excellent fit to the cosmic microwave background data at high and low redshift, describing the cosmological information in over a billion map pixels with just six parameters. With 18 peaks in the temperature and polarization angular power spectra constrained well, Planck measures five of the six parameters to better than 1% (simultaneously), with the best-determined parameter (theta_*) now known to 0.03%. We describe the multi-component sky as seen by Planck, the success of the LCDM model, and the connection to lower-redshift probes of structure formation. We also give a comprehensive summary of the major changes introduced in this 2018 release. The Planck data, alone and in combination with other probes, provide stringent constraints on our models of the early Universe and the large-scale structure within which all astrophysical objects form and evolve. We discuss some lessons learned from the Planck mission, and highlight areas ripe for further experimental advances., Comment: 61 pages, 40 figures, matches version accepted by A&A
- Published
- 2018
- Full Text
- View/download PDF
15. Planck 2018 results. II. Low Frequency Instrument data processing
- Author
-
Planck Collaboration, Akrami, Y., Argüeso, F., Ashdown, M., Aumont, J., Baccigalupi, C., Ballardini, M., Banday, A. J., Barreiro, R. B., Bartolo, N., Basak, S., Benabed, K., Bernard, J. -P., Bersanelli, M., Bielewicz, P., Bonavera, L., Bond, J. R., Borrill, J., Bouchet, F. R., Boulanger, F., Bucher, M., Burigana, C., Butler, R. C., Calabrese, E., Cardoso, J. -F., Colombo, L. P. L., Crill, B. P., Cuttaia, F., de Bernardis, P., de Rosa, A., de Zotti, G., Delabrouille, J., Di Valentino, E., Dickinson, C., Diego, J. M., Donzelli, S., Ducout, A., Dupac, X., Efstathiou, G., Elsner, F., Enßlin, T. A., Eriksen, H. K., Fantaye, Y., Finelli, F., Frailis, M., Franceschi, E., Frolov, A., Galeotta, S., Galli, S., Ganga, K., Génova-Santos, R. T., Gerbino, M., Ghosh, T., González-Nuevo, J., Górski, K. M., Gratton, S., Gruppuso, A., Gudmundsson, J. E., Handley, W., Hansen, F. K., Herranz, D., Hivon, E., Huang, Z., Jaffe, A. H., Jones, W. C., Karakci, A., Keihänen, E., Keskitalo, R., Kiiveri, K., Kim, J., Kisner, T. S., Krachmalnicoff, N., Kunz, M., Kurki-Suonio, H., Lamarre, J. -M., Lasenby, A., Lattanzi, M., Lawrence, C. R., Leahy, J. P., Levrier, F., Liguori, M., Lilje, P. B., Lindholm, V., López-Caniego, M., Ma, Y. -Z., Macías-Pérez, J. F., Maggio, G., Maino, D., Mandolesi, N., Mangilli, A., Maris, M., Martin, P. G., Martínez-González, E., Matarrese, S., Mauri, N., McEwen, J. D., Meinhold, P. R., Melchiorri, A., Mennella, A., Migliaccio, M., Molinari, D., Montier, L., Morgante, G., Moss, A., Natoli, P., Pagano, L., Paoletti, D., Partridge, B., Patanchon, G., Patrizii, L., Peel, M., Perrotta, F., Pettorino, V., Piacentini, F., Polenta, G., Puget, J. -L., Rachen, J. P., Racine, B., Reinecke, M., Remazeilles, M., Renzi, A., Rocha, G., Roudier, G., Rubiño-Martín, J. A., Salvati, L., Sandri, M., Savelainen, M., Scott, D., Seljebotn, D. S., Sirignano, C., Sirri, G., Spencer, L. D., Suur-Uski, A. -S., Tauber, J. A., Tavagnacco, D., Tenti, M., Terenzi, L., Toffolatti, L., Tomasi, M., Trombetti, T., Valiviita, J., Vansyngel, F., Van Tent, B., Vielva, P., Villa, F., Vittorio, N., Wandelt, B. D., Watson, R., Wehus, I. K., Zacchei, A., and Zonca, A.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present a final description of the data-processing pipeline for the Planck, Low Frequency Instrument (LFI), implemented for the 2018 data release. Several improvements have been made with respect to the previous release, especially in the calibration process and in the correction of instrumental features such as the effects of nonlinearity in the response of the analogue-to-digital converters. We provide a brief pedagogical introduction to the complete pipeline, as well as a detailed description of the important changes implemented. Self-consistency of the pipeline is demonstrated using dedicated simulations and null tests. We present the final version of the LFI full sky maps at 30, 44, and 70 GHz, both in temperature and polarization, together with a refined estimate of the Solar dipole and a final assessment of the main LFI instrumental parameters.
- Published
- 2018
- Full Text
- View/download PDF
16. Planck 2018 results. VIII. Gravitational lensing
- Author
-
Planck Collaboration, Aghanim, N., Akrami, Y., Ashdown, M., Aumont, J., Baccigalupi, C., Ballardini, M., Banday, A. J., Barreiro, R. B., Bartolo, N., Basak, S., Benabed, K., Bernard, J. -P., Bersanelli, M., Bielewicz, P., Bock, J. J., Bond, J. R., Borrill, J., Bouchet, F. R., Boulanger, F., Bucher, M., Burigana, C., Calabrese, E., Cardoso, J. -F., Carron, J., Challinor, A., Chiang, H. C., Colombo, L. P. L., Combet, C., Crill, B. P., Cuttaia, F., de Bernardis, P., de Zotti, G., Delabrouille, J., Di Valentino, E., Diego, J. M., Doré, O., Douspis, M., Ducout, A., Dupac, X., Efstathiou, G., Elsner, F., Enßlin, T. A., Eriksen, H. K., Fantaye, Y., Fernandez-Cobos, R., Forastieri, F., Frailis, M., Fraisse, A. A., Franceschi, E., Frolov, A., Galeotta, S., Galli, S., Ganga, K., Génova-Santos, R. T., Gerbino, M., Ghosh, T., González-Nuevo, J., Górski, K. M., Gratton, S., Gruppuso, A., Gudmundsson, J. E., Hamann, J., Handley, W., Hansen, F. K., Herranz, D., Hivon, E., Huang, Z., Jaffe, A. H., Jones, W. C., Karakci, A., Keihänen, E., Keskitalo, R., Kiiveri, K., Kim, J., Knox, L., Krachmalnicoff, N., Kunz, M., Kurki-Suonio, H., Lagache, G., Lamarre, J. -M., Lasenby, A., Lattanzi, M., Lawrence, C. R., Jeune, M. Le, Levrier, F., Lewis, A., Liguori, M., Lilje, P. B., Lindholm, V., López-Caniego, M., Lubin, P. M., Ma, Y. -Z., Macías-Pérez, J. F., Maggio, G., Maino, D., Mandolesi, N., Mangilli, A., Marcos-Caballero, A., Maris, M., Martin, P. G., Martínez-González, E., Matarrese, S., Mauri, N., McEwen, J. D., Melchiorri, A., Mennella, A., Migliaccio, M., Miville-Deschênes, M. -A., Molinari, D., Moneti, A., Montier, L., Morgante, G., Moss, A., Natoli, P., Pagano, L., Paoletti, D., Partridge, B., Patanchon, G., Perrotta, F., Pettorino, V., Piacentini, F., Polastri, L., Polenta, G., Puget, J. -L., Rachen, J. P., Reinecke, M., Remazeilles, M., Renzi, A., Rocha, G., Rosset, C., Roudier, G., Rubiño-Martín, J. A., Ruiz-Granados, B., Salvati, L., Sandri, M., Savelainen, M., Scott, D., Sirignano, C., Sunyaev, R., Suur-Uski, A. -S., Tauber, J. A., Tavagnacco, D., Tenti, M., Toffolatti, L., Tomasi, M., Trombetti, T., Valiviita, J., Van Tent, B., Vielva, P., Villa, F., Vittorio, N., Wandelt, B. D., Wehus, I. K., White, M., White, S. D. M., Zacchei, A., and Zonca, A.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present measurements of the cosmic microwave background (CMB) lensing potential using the final $\textit{Planck}$ 2018 temperature and polarization data. We increase the significance of the detection of lensing in the polarization maps from $5\,\sigma$ to $9\,\sigma$. Combined with temperature, lensing is detected at $40\,\sigma$. We present an extensive set of tests of the robustness of the lensing-potential power spectrum, and construct a minimum-variance estimator likelihood over lensing multipoles $8 \le L \le 400$. We find good consistency between lensing constraints and the results from the $\textit{Planck}$ CMB power spectra within the $\rm{\Lambda CDM}$ model. Combined with baryon density and other weak priors, the lensing analysis alone constrains $\sigma_8 \Omega_{\rm m}^{0.25}=0.589\pm 0.020$ ($1\,\sigma$ errors). Also combining with baryon acoustic oscillation (BAO) data, we find tight individual parameter constraints, $\sigma_8=0.811\pm0.019$, $H_0=67.9_{-1.3}^{+1.2}\,\text{km}\,\text{s}^{-1}\,\rm{Mpc}^{-1}$, and $\Omega_{\rm m}=0.303^{+0.016}_{-0.018}$. Combining with $\textit{Planck}$ CMB power spectrum data, we measure $\sigma_8$ to better than $1\,\%$ precision, finding $\sigma_8=0.811\pm 0.006$. We find consistency with the lensing results from the Dark Energy Survey, and give combined lensing-only parameter constraints that are tighter than joint results using galaxy clustering. Using $\textit{Planck}$ cosmic infrared background (CIB) maps we make a combined estimate of the lensing potential over $60\,\%$ of the sky with considerably more small-scale signal. We demonstrate delensing of the $\textit{Planck}$ power spectra, detecting a maximum removal of $40\,\%$ of the lensing-induced power in all spectra. The improvement in the sharpening of the acoustic peaks by including both CIB and the quadratic lensing reconstruction is detected at high significance (abridged)., Comment: Abstract abridged for arxiv submission. Lensing data products available at https://wiki.cosmos.esa.int/planck-legacy-archive/index.php/Lensing. Matches version accepted by A&A, with minor updates from v1
- Published
- 2018
- Full Text
- View/download PDF
17. Planck 2018 results. X. Constraints on inflation
- Author
-
Planck Collaboration, Akrami, Y., Arroja, F., Ashdown, M., Aumont, J., Baccigalupi, C., Ballardini, M., Banday, A. J., Barreiro, R. B., Bartolo, N., Basak, S., Benabed, K., Bernard, J. -P., Bersanelli, M., Bielewicz, P., Bock, J. J., Bond, J. R., Borrill, J., Bouchet, F. R., Boulanger, F., Bucher, M., Burigana, C., Butler, R. C., Calabrese, E., Cardoso, J. -F., Carron, J., Challinor, A., Chiang, H. C., Colombo, L. P. L., Combet, C., Contreras, D., Crill, B. P., Cuttaia, F., de Bernardis, P., de Zotti, G., Delabrouille, J., Delouis, J. -M., Di Valentino, E., Diego, J. M., Donzelli, S., Doré, O., Douspis, M., Ducout, A., Dupac, X., Dusini, S., Efstathiou, G., Elsner, F., Enßlin, T. A., Eriksen, H. K., Fantaye, Y., Fergusson, J., Fernandez-Cobos, R., Finelli, F., Forastieri, F., Frailis, M., Franceschi, E., Frolov, A., Galeotta, S., Galli, S., Ganga, K., Gauthier, C., Génova-Santos, R. T., Gerbino, M., Ghosh, T., González-Nuevo, J., Górski, K. M., Gratton, S., Gruppuso, A., Gudmundsson, J. E., Hamann, J., Handley, W., Hansen, F. K., Herranz, D., Hivon, E., Hooper, D. C., Huang, Z., Jaffe, A. H., Jones, W. C., Keihänen, E., Keskitalo, R., Kiiveri, K., Kim, J., Kisner, T. S., Krachmalnicoff, N., Kunz, M., Kurki-Suonio, H., Lagache, G., Lamarre, J. -M., Lasenby, A., Lattanzi, M., Lawrence, C. R., Jeune, M. Le, Lesgourgues, J., Levrier, F., Lewis, A., Liguori, M., Lilje, P. B., Lindholm, V., Lpez-Caniego, M., Lubin, P. M., Ma, Y. -Z., Macías-Pérez, J. F., Maggio, G., Maino, D., Mandolesi, N., Mangilli, A., Marcos-Caballero, A., Maris, M., Martin, P. G., Martínez-González, E., Matarrese, S., Mauri, N., McEwen, J. D., Meerburg, P. D., Meinhold, P. R., Melchiorri, A., Mennella, A., Migliaccio, M., Mitra, S., Miville-Deschênes, M. -A., Molinari, D., Moneti, A., Montier, L., Morgante, G., Moss, A., Münchmeyer, M., Natoli, P., Nørgaard-Nielsen, H. U., Pagano, L., Paoletti, D., Partridge, B., Patanchon, G., Peiris, H. V., Perrotta, F., Pettorino, V., Piacentini, F., Polastri, L., Polenta, G., Puget, J. -L., Rachen, J. P., Reinecke, M., Remazeilles, M., Renzi, A., Rocha, G., Rosset, C., Roudier, G., Rubiño-Martín, J. A., Ruiz-Granados, B., Salvati, L., Sandri, M., Savelainen, M., Scott, D., Shellard, E. P. S., Shiraishi, M., Sirignano, C., Sirri, G., Spencer, L. D., Sunyaev, R., Suur-Uski, A. -S., Tauber, J. A., Tavagnacco, D., Tenti, M., Toffolatti, L., Tomasi, M., Trombetti, T., Valiviita, J., Van Tent, B., Vielva, P., Villa, F., Vittorio, N., Wandelt, B. D., Wehus, I. K., White, S. D. M., Zacchei, A., Zibin, J. P., and Zonca, A.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We report on the implications for cosmic inflation of the 2018 Release of the Planck CMB anisotropy measurements. The results are fully consistent with the two previous Planck cosmological releases, but have smaller uncertainties thanks to improvements in the characterization of polarization at low and high multipoles. Planck temperature, polarization, and lensing data determine the spectral index of scalar perturbations to be $n_\mathrm{s}=0.9649\pm 0.0042$ at 68% CL and show no evidence for a scale dependence of $n_\mathrm{s}.$ Spatial flatness is confirmed at a precision of 0.4% at 95% CL with the combination with BAO data. The Planck 95% CL upper limit on the tensor-to-scalar ratio, $r_{0.002}<0.10$, is further tightened by combining with the BICEP2/Keck Array BK15 data to obtain $r_{0.002}<0.056$. In the framework of single-field inflationary models with Einstein gravity, these results imply that: (a) slow-roll models with a concave potential, $V" (\phi) < 0,$ are increasingly favoured by the data; and (b) two different methods for reconstructing the inflaton potential find no evidence for dynamics beyond slow roll. Non-parametric reconstructions of the primordial power spectrum consistently confirm a pure power law. A complementary analysis also finds no evidence for theoretically motivated parameterized features in the Planck power spectrum, a result further strengthened for certain oscillatory models by a new combined analysis that includes Planck bispectrum data. The new Planck polarization data provide a stringent test of the adiabaticity of the initial conditions. The polarization data also provide improved constraints on inflationary models that predict a small statistically anisotropic quadrupolar modulation of the primordial fluctuations. However, the polarization data do not confirm physical models for a scale-dependent dipolar modulation., Comment: References added and minor improvements. BICEP2/Keck Array BK15 is used in the place of BICEP2/Keck Array BK14
- Published
- 2018
- Full Text
- View/download PDF
18. Planck 2018 results. VI. Cosmological parameters
- Author
-
Planck Collaboration, Aghanim, N., Akrami, Y., Ashdown, M., Aumont, J., Baccigalupi, C., Ballardini, M., Banday, A. J., Barreiro, R. B., Bartolo, N., Basak, S., Battye, R., Benabed, K., Bernard, J. -P., Bersanelli, M., Bielewicz, P., Bock, J. J., Bond, J. R., Borrill, J., Bouchet, F. R., Boulanger, F., Bucher, M., Burigana, C., Butler, R. C., Calabrese, E., Cardoso, J. -F., Carron, J., Challinor, A., Chiang, H. C., Chluba, J., Colombo, L. P. L., Combet, C., Contreras, D., Crill, B. P., Cuttaia, F., de Bernardis, P., de Zotti, G., Delabrouille, J., Delouis, J. -M., Di Valentino, E., Diego, J. M., Doré, O., Douspis, M., Ducout, A., Dupac, X., Dusini, S., Efstathiou, G., Elsner, F., Enßlin, T. A., Eriksen, H. K., Fantaye, Y., Farhang, M., Fergusson, J., Fernandez-Cobos, R., Finelli, F., Forastieri, F., Frailis, M., Fraisse, A. A., Franceschi, E., Frolov, A., Galeotta, S., Galli, S., Ganga, K., Génova-Santos, R. T., Gerbino, M., Ghosh, T., González-Nuevo, J., Górski, K. M., Gratton, S., Gruppuso, A., Gudmundsson, J. E., Hamann, J., Handley, W., Hansen, F. K., Herranz, D., Hildebrandt, S. R., Hivon, E., Huang, Z., Jaffe, A. H., Jones, W. C., Karakci, A., Keihänen, E., Keskitalo, R., Kiiveri, K., Kim, J., Kisner, T. S., Knox, L., Krachmalnicoff, N., Kunz, M., Kurki-Suonio, H., Lagache, G., Lamarre, J. -M., Lasenby, A., Lattanzi, M., Lawrence, C. R., Jeune, M. Le, Lemos, P., Lesgourgues, J., Levrier, F., Lewis, A., Liguori, M., Lilje, P. B., Lilley, M., Lindholm, V., López-Caniego, M., Lubin, P. M., Ma, Y. -Z., Macías-Pérez, J. F., Maggio, G., Maino, D., Mandolesi, N., Mangilli, A., Marcos-Caballero, A., Maris, M., Martin, P. G., Martinelli, M., Martínez-González, E., Matarrese, S., Mauri, N., McEwen, J. D., Meinhold, P. R., Melchiorri, A., Mennella, A., Migliaccio, M., Millea, M., Mitra, S., Miville-Deschênes, M. -A., Molinari, D., Montier, L., Morgante, G., Moss, A., Natoli, P., Nørgaard-Nielsen, H. U., Pagano, L., Paoletti, D., Partridge, B., Patanchon, G., Peiris, H. V., Perrotta, F., Pettorino, V., Piacentini, F., Polastri, L., Polenta, G., Puget, J. -L., Rachen, J. P., Reinecke, M., Remazeilles, M., Renzi, A., Rocha, G., Rosset, C., Roudier, G., Rubiño-Martín, J. A., Ruiz-Granados, B., Salvati, L., Sandri, M., Savelainen, M., Scott, D., Shellard, E. P. S., Sirignano, C., Sirri, G., Spencer, L. D., Sunyaev, R., Suur-Uski, A. -S., Tauber, J. A., Tavagnacco, D., Tenti, M., Toffolatti, L., Tomasi, M., Trombetti, T., Valenziano, L., Valiviita, J., Van Tent, B., Vibert, L., Vielva, P., Villa, F., Vittorio, N., Wandelt, B. D., Wehus, I. K., White, M., White, S. D. M., Zacchei, A., and Zonca, A.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present cosmological parameter results from the final full-mission Planck measurements of the CMB anisotropies. We find good consistency with the standard spatially-flat 6-parameter $\Lambda$CDM cosmology having a power-law spectrum of adiabatic scalar perturbations (denoted "base $\Lambda$CDM" in this paper), from polarization, temperature, and lensing, separately and in combination. A combined analysis gives dark matter density $\Omega_c h^2 = 0.120\pm 0.001$, baryon density $\Omega_b h^2 = 0.0224\pm 0.0001$, scalar spectral index $n_s = 0.965\pm 0.004$, and optical depth $\tau = 0.054\pm 0.007$ (in this abstract we quote $68\,\%$ confidence regions on measured parameters and $95\,\%$ on upper limits). The angular acoustic scale is measured to $0.03\,\%$ precision, with $100\theta_*=1.0411\pm 0.0003$. These results are only weakly dependent on the cosmological model and remain stable, with somewhat increased errors, in many commonly considered extensions. Assuming the base-$\Lambda$CDM cosmology, the inferred late-Universe parameters are: Hubble constant $H_0 = (67.4\pm 0.5)$km/s/Mpc; matter density parameter $\Omega_m = 0.315\pm 0.007$; and matter fluctuation amplitude $\sigma_8 = 0.811\pm 0.006$. We find no compelling evidence for extensions to the base-$\Lambda$CDM model. Combining with BAO we constrain the effective extra relativistic degrees of freedom to be $N_{\rm eff} = 2.99\pm 0.17$, and the neutrino mass is tightly constrained to $\sum m_\nu< 0.12$eV. The CMB spectra continue to prefer higher lensing amplitudes than predicted in base -$\Lambda$CDM at over $2\,\sigma$, which pulls some parameters that affect the lensing amplitude away from the base-$\Lambda$CDM model; however, this is not supported by the lensing reconstruction or (in models that also change the background geometry) BAO data. (Abridged), Comment: 73 pages; Updated with published reionization result corrigendum on p59. Parameter tables and chains available at https://wiki.cosmos.esa.int/planck-legacy-archive/index.php/Cosmological_Parameters
- Published
- 2018
- Full Text
- View/download PDF
19. Planck intermediate results. LIV. The Planck Multi-frequency Catalogue of Non-thermal Sources
- Author
-
Planck Collaboration, Akrami, Y., Argüeso, F., Ashdown, M., Aumont, J., Baccigalupi, C., Ballardini, M., Banday, A. J., Barreiro, R. B., Bartolo, N., Basak, S., Benabed, K., Bernard, J. -P., Bersanelli, M., Bielewicz, P., Bonavera, L., Bond, J. R., Borrill, J., Bouchet, F. R., Burigana, C., Butler, R. C., Calabrese, E., Carron, J., Chiang, H. C., Combet, C., Crill, B. P., Cuttaia, F., de Bernardis, P., de Rosa, A., de Zotti, G., Delabrouille, J., Delouis, J. -M., Di Valentino, E., Dickinson, C., Diego, J. M., Ducout, A., Dupac, X., Efstathiou, G., Elsner, F., Enßlin, T. A., Eriksen, H. K., Fantaye, Y., Finelli, F., Frailis, M., Fraisse, A. A., Franceschi, E., Frolov, A., Galeotta, S., Galli, S., Ganga, K., Génova-Santos, R. T., Gerbino, M., Ghosh, T., González-Nuevo, J., Górski, K. M., Gratton, S., Gruppuso, A., Gudmundsson, J. E., Handley, W., Hansen, F. K., Herranz, D., Hivon, E., Huang, Z., Jaffe, A. H., Jones, W. C., Keihänen, E., Keskitalo, R., Kiiveri, K., Kim, J., Kisner, T. S., Krachmalnicoff, N., Kunz, M., Kurki-Suonio, H., Lähteenmäki, A., Lamarre, J. -M., Lasenby, A., Lattanzi, M., Lawrence, C. R., Levrier, F., Liguori, M., Lilje, P. B., Lindholm, V., López-Caniego, M., Ma, Y. -Z., Macías-Pérez, J. F., Maggio, G., Maino, D., Mandolesi, N., Mangilli, A., Maris, M., Martin, P. G., Martínez-González, E., Matarrese, S., McEwen, J. D., Meinhold, P. R., Melchiorri, A., Mennella, A., Migliaccio, M., Miville-Deschênes, M. -A., Molinari, D., Moneti, A., Montier, L., Morgante, G., Natoli, P., Oxborrow, C. A., Pagano, L., Paoletti, D., Partridge, B., Patanchon, G., Pearson, T. J., Pettorino, V., Piacentini, F., Polenta, G., Puget, J. -L., Rachen, J. P., Racine, B., Reinecke, M., Remazeilles, M., Renzi, A., Rocha, G., Roudier, G., Rubiño-Martín, J. A., Salvati, L., Sandri, M., Savelainen, M., Scott, D., Suur-Uski, A. -S., Tauber, J. A., Tavagnacco, D., Toffolatti, L., Tomasi, M., Trombetti, T., Tucci, M., Valiviita, J., Van Tent, B., Vielva, P., Villa, F., Vittorio, N., Wehus, I. K., Zacchei, A., and Zonca, A.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
This paper presents the Planck Multi-frequency Catalogue of Non-thermal (i.e. synchrotron-dominated) Sources (PCNT) observed between 30 and 857 GHz by the ESA Planck mission. This catalogue was constructed by selecting objects detected in the full mission all-sky temperature maps at 30 and 143 GHz, with a signal-to-noise ratio (S/N)>3 in at least one of the two channels after filtering with a particular Mexican hat wavelet. As a result, 29400 source candidates were selected. Then, a multi-frequency analysis was performed using the Matrix Filters methodology at the position of these objects, and flux densities and errors were calculated for all of them in the nine Planck channels. The present catalogue is the first unbiased, full-sky catalogue of synchrotron-dominated sources published at millimetre and submillimetre wavelengths and constitutes a powerful database for statistical studies of non-thermal extragalactic sources, whose emission is dominated by the central active galactic nucleus. Together with the full multi-frequency catalogue, we also define the Bright Planck Multi-frequency Catalogue of Non-thermal Sources PCNTb, where only those objects with a S/N>4 at both 30 and 143 GHz were selected. In this catalogue 1146 compact sources are detected outside the adopted Planck GAL070 mask; thus, these sources constitute a highly reliable sample of extragalactic radio sources. We also flag the high-significance subsample PCNThs, a subset of 151 sources that are detected with S/N>4 in all nine Planck channels, 75 of which are found outside the Planck mask adopted here. The remaining 76 sources inside the Galactic mask are very likely Galactic objects., Comment: 24 pages, 15 figures. Accepted for publication in Astronomy & Astrophysics
- Published
- 2018
- Full Text
- View/download PDF
20. Planck 2018 results. XI. Polarized dust foregrounds
- Author
-
Planck Collaboration, Akrami, Y., Ashdown, M., Aumont, J., Baccigalupi, C., Ballardini, M., Banday, A. J., Barreiro, R. B., Bartolo, N., Basak, S., Benabed, K., Bernard, J. -P., Bersanelli, M., Bielewicz, P., Bond, J. R., Borrill, J., Bouchet, F. R., Boulanger, F., Bracco, A., Bucher, M., Burigana, C., Calabrese, E., Cardoso, J. -F., Carron, J., Chiang, H. C., Combet, C., Crill, B. P., de Bernardis, P., de Zotti, G., Delabrouille, J., Delouis, J. -M., Di Valentino, E., Dickinson, C., Diego, J. M., Ducout, A., Dupac, X., Efstathiou, G., Elsner, F., Enßlin, T. A., Falgarone, E., Fantaye, Y., Ferrière, K., Finelli, F., Forastieri, F., Frailis, M., Fraisse, A. A., Franceschi, E., Frolov, A., Galeotta, S., Galli, S., Ganga, K., Génova-Santos, R. T., Ghosh, T., González-Nuevo, J., Górski, K. M., Gruppuso, A., Gudmundsson, J. E., Guillet, V., Handley, W., Hansen, F. K., Herranz, D., Huang, Z., Jaffe, A. H., Jones, W. C., Keihänen, E., Keskitalo, R., Kiiveri, K., Kim, J., Krachmalnicoff, N., Kunz, M., Kurki-Suonio, H., Lamarre, J. -M., Lasenby, A., Jeune, M. Le, Levrier, F., Liguori, M., Lilje, P. B., Lindholm, V., López-Caniego, M., Lubin, P. M., Ma, Y. -Z., Macías-Pérez, J. F., Maggio, G., Maino, D., Mandolesi, N., Mangilli, A., Martin, P. G., Martínez-González, E., Matarrese, S., McEwen, J. D., Meinhold, P. R., Melchiorri, A., Migliaccio, M., Miville-Deschênes, M. -A., Molinari, D., Moneti, A., Montier, L., Morgante, G., Natoli, P., Pagano, L., Paoletti, D., Pettorino, V., Piacentini, F., Polenta, G., Puget, J. -L., Rachen, J. P., Reinecke, M., Remazeilles, M., Renzi, A., Rocha, G., Rosset, C., Roudier, G., Rubiño-Martín, J. A., Ruiz-Granados, B., Salvati, L., Sandri, M., Savelainen, M., Scott, D., Soler, J. D., Spencer, L. D., Tauber, J. A., Tavagnacco, D., Toffolatti, L., Tomasi, M., Trombetti, T., Valiviita, J., Vansyngel, F., Van Tent, F., Vielva, P., Villa, F., Vittorio, N., Wehus, I. K., Zacchei, A., and Zonca, A.
- Subjects
Astrophysics - Astrophysics of Galaxies ,Astrophysics - Cosmology and Nongalactic Astrophysics ,Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
The study of polarized dust emission has become entwined with the analysis of the cosmic microwave background (CMB) polarization. We use new Planck maps to characterize Galactic dust emission as a foreground to the CMB polarization. We present Planck EE, BB, and TE power spectra of dust polarization at 353 GHz for six nested sky regions covering from 24 to 71 % of the sky. We present power-law fits to the angular power spectra, yielding evidence for statistically significant variations of the exponents over sky regions and a difference between the values for the EE and BB spectra. The TE correlation and E/B power asymmetry extend to low multipoles that were not included in earlier Planck polarization papers. We also report evidence for a positive TB dust signal. Combining data from Planck and WMAP, we determine the amplitudes and spectral energy distributions (SEDs) of polarized foregrounds, including the correlation between dust and synchrotron polarized emission, for the six sky regions as a function of multipole. This quantifies the challenge of the component separation procedure required for detecting the reionization and recombination peaks of primordial CMB B modes. The SED of polarized dust emission is fit well by a single-temperature modified blackbody emission law from 353 GHz to below 70 GHz. For a dust temperature of 19.6 K, the mean spectral index for dust polarization is $\beta_{\rm d}^{P} = 1.53\pm0.02 $. By fitting multi-frequency cross-spectra, we examine the correlation of the dust polarization maps across frequency. We find no evidence for decorrelation. If the Planck limit for the largest sky region applies to the smaller sky regions observed by sub-orbital experiments, then decorrelation might not be a problem for CMB experiments aiming at a primordial B-mode detection limit on the tensor-to-scalar ratio $r\simeq0.01$ at the recombination peak., Comment: Final version to appear in A&A
- Published
- 2018
- Full Text
- View/download PDF
21. Planck intermediate results. LIII. Detection of velocity dispersion from the kinetic Sunyaev-Zeldovich effect
- Author
-
Planck Collaboration, Aghanim, N., Akrami, Y., Ashdown, M., Aumont, J., Baccigalupi, C., Ballardini, M., Banday, A. J., Barreiro, R. B., Bartolo, N., Basak, S., Battye, R., Benabed, K., Bernard, J. -P., Bersanelli, M., Bielewicz, P., Bond, J. R., Borrill, J., Bouchet, F. R., Burigana, C., Calabrese, E., Carron, J., Chiang, H. C., Comis, B., Contreras, D., Crill, B. P., Curto, A., Cuttaia, F., de Bernardis, P., de Rosa, A., de Zotti, G., Delabrouille, J., Di Valentino, E., Dickinson, C., Diego, J. M., Doré, O., Ducout, A., Dupac, X., Elsner, F., Enßlin, T. A., Eriksen, H. K., Falgarone, E., Fantaye, Y., Finelli, F., Forastieri, F., Frailis, M., Fraisse, A. A., Franceschi, E., Frolov, A., Galeotta, S., Galli, S., Ganga, K., Gerbino, M., Górski, K. M., Gruppuso, A., Gudmundsson, J. E., Handley, W., Hansen, F. K., Herranz, D., Hivon, E., Huang, Z., Jaffe, A. H., Keihänen, E., Keskitalo, R., Kiiveri, K., Kim, J., Kisner, T. S., Krachmalnicoff, N., Kunz, M., Kurki-Suonio, H., Lamarre, J. -M., Lasenby, A., Lattanzi, M., Lawrence, C. R., Jeune, M. Le, Levrier, F., Liguori, M., Lilje, P. B., Lindholm, V., López-Caniego, M., Lubin, P. M., Ma, Y. -Z., Macías-Pérez, J. F., Maggio, G., Maino, D., Mandolesi, N., Mangilli, A., Martin, P. G., Martínez-González, E., Matarrese, S., Mauri, N., McEwen, J. D., Melchiorri, A., Mennella, A., Migliaccio, M., Miville-Deschênes, M. -A., Molinari, D., Moneti, A., Montier, L., Morgante, G., Natoli, P., Oxborrow, C. A., Pagano, L., Paoletti, D., Partridge, B., Perdereau, O., Perotto, L., Pettorino, V., Piacentini, F., Plaszczynski, S., Polastri, L., Polenta, G., Rachen, J. P., Racine, B., Reinecke, M., Remazeilles, M., Renzi, A., Rocha, G., Roudier, G., Ruiz-Granados, B., Sandri, M., Savelainen, M., Scott, D., Sirignano, C., Sirri, G., Spencer, L. D., Stanco, L., Sunyaev, R., Tauber, J. A., Tavagnacco, D., Tenti, M., Toffolatti, L., Tomasi, M., Tristram, M., Trombetti, T., Valiviita, J., Van Tent, F., Vielva, P., Villa, F., Vittorio, N., Wandelt, B. D., Wehus, I. K., Zacchei, A., and Zonca, A.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Using the ${\it Planck}$ full-mission data, we present a detection of the temperature (and therefore velocity) dispersion due to the kinetic Sunyaev-Zeldovich (kSZ) effect from clusters of galaxies. To suppress the primary CMB and instrumental noise we derive a matched filter and then convolve it with the ${\it Planck}$ foreground-cleaned `${\tt 2D-ILC\,}$' maps. By using the Meta Catalogue of X-ray detected Clusters of galaxies (MCXC), we determine the normalized ${\it rms}$ dispersion of the temperature fluctuations at the positions of clusters, finding that this shows excess variance compared with the noise expectation. We then build an unbiased statistical estimator of the signal, determining that the normalized mean temperature dispersion of $1526$ clusters is $\langle \left(\Delta T/T \right)^{2} \rangle = (1.64 \pm 0.48) \times 10^{-11}$. However, comparison with analytic calculations and simulations suggest that around $0.7\,\sigma$ of this result is due to cluster lensing rather than the kSZ effect. By correcting this, the temperature dispersion is measured to be $\langle \left(\Delta T/T \right)^{2} \rangle = (1.35 \pm 0.48) \times 10^{-11}$, which gives a detection at the $2.8\,\sigma$ level. We further convert uniform-weight temperature dispersion into a measurement of the line-of-sight velocity dispersion, by using estimates of the optical depth of each cluster (which introduces additional uncertainty into the estimate). We find that the velocity dispersion is $\langle v^{2} \rangle =(123\,000 \pm 71\,000)\,({\rm km}\,{\rm s}^{-1})^{2}$, which is consistent with findings from other large-scale structure studies, and provides direct evidence of statistical homogeneity on scales of $600\,h^{-1}{\rm Mpc}$. Our study shows the promise of using cross-correlations of the kSZ effect with large-scale structure in order to constrain the growth of structure., Comment: 20 pages, 12 figures and 8 tables, A&A in press
- Published
- 2017
- Full Text
- View/download PDF
22. Planck intermediate results. LII. Planet flux densities
- Author
-
Planck Collaboration, Akrami, Y., Ashdown, M., Aumont, J., Baccigalupi, C., Ballardini, M., Banday, A. J., Barreiro, R. B., Bartolo, N., Basak, S., Benabed, K., Bernard, J. -P., Bersanelli, M., Bielewicz, P., Bonavera, L., Bond, J. R., Borrill, J., Bouchet, F. R., Boulanger, F., Bucher, M., Burigana, C., Butler, R. C., Calabrese, E., Cardoso, J. -F., Carron, J., Chiang, H. C., Colombo, L. P. L., Comis, B., Couchot, F., Coulais, A., Crill, B. P., Curto, A., Cuttaia, F., de Bernardis, P., de Rosa, A., de Zotti, G., Delabrouille, J., Di Valentino, E., Dickinson, C., Diego, J. M., Doré, O., Ducout, A., Dupac, X., Elsner, F., Enßlin, T. A., Eriksen, H. K., Falgarone, E., Fantaye, Y., Finelli, F., Frailis, M., Fraisse, A. A., Franceschi, E., Frolov, A., Galeotta, S., Galli, S., Ganga, K., Génova-Santos, R. T., Gerbino, M., González-Nuevo, J., Górski, K. M., Gruppuso, A., Gudmundsson, J. E., Hansen, F. K., Helou, G., Henrot-Versillé, S., Herranz, D., Hivon, E., Jaffe, A. H., Jones, W. C., Keihänen, E., Keskitalo, R., Kiiveri, K., Kim, J., Kisner, T. S., Krachmalnicoff, N., Kunz, M., Kurki-Suonio, H., Lagache, G., Lamarre, J. -M., Lasenby, A., Lattanzi, M., Lawrence, C. R., Jeune, M. Le, Lellouch, E., Levrier, F., Liguori, M., Lilje, P. B., Lindholm, V., López-Caniego, M., Ma, Y. -Z., Macías-Pérez, J. F., Maggio, G., Maino, D., Mandolesi, N., Maris, M., Martin, P. G., Martínez-González, E., Matarrese, S., Mauri, N., McEwen, J. D., Melchiorri, A., Mennella, A., Migliaccio, M., Miville-Deschênes, M. -A., Molinari, D., Moneti, A., Montier, L., Moreno, R., Morgante, G., Natoli, P., Oxborrow, C. A., Paoletti, D., Partridge, B., Patanchon, G., Patrizii, L., Perdereau, O., Piacentini, F., Plaszczynski, S., Polenta, G., Rachen, J. P., Racine, B., Reinecke, M., Remazeilles, M., Renzi, A., Rocha, G., Romelli, E., Rosset, C., Roudier, G., Rubiño-Martín, J. A., Ruiz-Granados, B., Salvati, L., Sandri, M., Savelainen, M., Scott, D., Sirri, G., Spencer, L. D., Suur-Uski, A. -S., Tauber, J. A., Tavagnacco, D., Tenti, M., Toffolatti, L., Tomasi, M., Tristram, M., Trombetti, T., Valiviita, J., Van Tent, F., Vielva, P., Villa, F., Wehus, I. K., and Zacchei, A.
- Subjects
Astrophysics - Earth and Planetary Astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Measurements of flux density are described for five planets, Mars, Jupiter, Saturn, Uranus, and Neptune, across the six Planck High Frequency Instrument frequency bands (100-857 GHz) and these are then compared with models and existing data. In our analysis, we have also included estimates of the brightness of Jupiter and Saturn at the three frequencies of the Planck Low Frequency Instrument (30, 44, and 70 GHz). The results provide constraints on the intrinsic brightness and the brightness time-variability of these planets. The majority of the planet flux density estimates are limited by systematic errors, but still yield better than 1% measurements in many cases. Applying data from Planck HFI, the Wilkinson Microwave Anisotropy Probe (WMAP), and the Atacama Cosmology Telescope (ACT) to a model that incorporates contributions from Saturn's rings to the planet's total flux density suggests a best fit value for the spectral index of Saturn's ring system of $\beta _\mathrm{ring} = 2.30\pm0.03$ over the 30-1000 GHz frequency range. The average ratio between the Planck-HFI measurements and the adopted model predictions for all five planets (excluding Jupiter observations for 353 GHz) is 0.997, 0.997, 1.018, and 1.032 for 100, 143, 217, and 353 GHz, respectively. Model predictions for planet thermodynamic temperatures are therefore consistent with the absolute calibration of Planck-HFI detectors at about the three-percent-level. We compare our measurements with published results from recent cosmic microwave background experiments. In particular, we observe that the flux densities measured by Planck HFI and WMAP agree to within 2%. These results allow experiments operating in the mm-wavelength range to cross-calibrate against Planck and improve models of radiative transport used in planetary science., Comment: 20 pages, 14 figures, abstract abridged for arXiv submission
- Published
- 2016
- Full Text
- View/download PDF
23. Planck intermediate results LIV. The Planck multi-frequency catalogue of non-thermal sources
- Author
-
Akrami, Y, Argueso, F, Ashdown, M, Aumont, J, Baccigalupi, C, Ballardini, M, Banday, AJ, Barreiro, RB, Bartolo, N, Basak, S, Benabed, K, Bernard, J-P, Bersanelli, M, Bielewicz, P, Bonavera, L, Bond, JR, Borrill, J, Bouchet, FR, Burigana, C, Butler, RC, Calabrese, E, Carron, J, Chiang, HC, Combet, C, Crill, BP, Cuttaia, F, de Bernardis, P, de Rosa, A, de Zotti, G, Delabrouille, J, Delouis, J-M, Di Valentino, E, Dickinson, C, Diego, JM, Ducout, A, Dupac, X, Efstathiou, G, Elsner, F, Ensslin, TA, Eriksen, HK, Fantaye, Y, Finelli, F, Frailis, M, Fraisse, AA, Franceschi, E, Frolov, A, Galeotta, S, Galli, S, Ganga, K, Genova-Santos, RT, Gerbino, M, Ghosh, T, Gonzalez-Nuevo, J, Gorski, KM, Gratton, S, Gruppuso, A, Gudmundsson, JE, Handley, W, Hansen, FK, Herranz, D, Hivon, E, Huang, Z, Jaffe, AH, Jones, WC, Keihanen, E, Keskitalo, R, Kiiveri, K, Kim, J, Kisner, TS, Krachmalnicoff, N, Kunz, M, Kurki-Suonio, H, Lahteenmaki, A, Lamarre, J-M, Lasenby, A, Lattanzi, M, Lawrence, CR, Levrier, F, Liguori, M, Lilje, PB, Lindholm, V, Lopez-Caniego, M, Ma, Y-Z, Macias-Perez, JF, Maggio, G, Maino, D, Mandolesi, N, Mangilli, A, Maris, M, Martin, PG, Martinez-Gonzalez, E, Matarrese, S, McEwen, JD, Meinhold, PR, Melchiorri, A, Mennella, A, Migliaccio, M, Miville-Deschenes, M-A, Molinari, D, and Moneti, A
- Subjects
catalogs ,cosmology: observations ,radio continuum: general ,submillimeter: general ,Astronomical And Space Sciences ,Astronomy & Astrophysics ,Astronomical and Space Sciences - Abstract
Context. The European Space Agency (ESA) Rosetta mission was the most comprehensive study of a comet ever performed. In particular, the Rosetta orbiter, which carried many instruments for monitoring the evolution of the dusty gas emitted by the cometary nucleus, returned an enormous volume of observational data collected from the close vicinity of the nucleus of comet 67P/Churyumov-Gerasimenko.Aims. Such data are expected to yield unique information on the physical processes of gas and dust emission, using current physical model fits to the data. We present such a model (the RZC model) and our procedure of adjustment of this model to the data.Methods. The RZC model consists of two components: (1) a numerical three-dimensional time-dependent code solving the Eulerian/Navier-Stokes equations governing the gas outflow, and a direct simulation Monte Carlo (DSMC) gaskinetic code with the same objective; and (2) an iterative procedure to adjust the assumed model parameters to best-fit the observational data at all times.Results. We demonstrate that our model is able to reproduce the overall features of the local neutral number density and composition measurements of Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) Comet Pressure Sensor (COPS) and Double Focusing Mass Spectrometer (DFMS) instruments in the period August 1–November 30, 2014. The results of numerical simulations show that illumination conditions on the nucleus are the main driver for the gas activity of the comet. We present the distribution of surface inhomogeneity best-fitted to the ROSINA COPS and DFMS in situ measurements.
- Published
- 2018
24. Planck intermediate results
- Author
-
Akrami, Y, Argüeso, F, Ashdown, M, Aumont, J, Baccigalupi, C, Ballardini, M, Banday, AJ, Barreiro, RB, Bartolo, N, Basak, S, Benabed, K, Bernard, J-P, Bersanelli, M, Bielewicz, P, Bonavera, L, Bond, JR, Borrill, J, Bouchet, FR, Burigana, C, Butler, RC, Calabrese, E, Carron, J, Chiang, HC, Combet, C, Crill, BP, Cuttaia, F, de Bernardis, P, de Rosa, A, de Zotti, G, Delabrouille, J, Delouis, J-M, Di Valentino, E, Dickinson, C, Diego, JM, Ducout, A, Dupac, X, Efstathiou, G, Elsner, F, Enßlin, TA, Eriksen, HK, Fantaye, Y, Finelli, F, Frailis, M, Fraisse, AA, Franceschi, E, Frolov, A, Galeotta, S, Galli, S, Ganga, K, Génova-Santos, RT, Gerbino, M, Ghosh, T, González-Nuevo, J, Górski, KM, Gratton, S, Gruppuso, A, Gudmundsson, JE, Handley, W, Hansen, FK, Herranz, D, Hivon, E, Huang, Z, Jaffe, AH, Jones, WC, Keihänen, E, Keskitalo, R, Kiiveri, K, Kim, J, Kisner, TS, Krachmalnicoff, N, Kunz, M, Kurki-Suonio, H, Lähteenmäki, A, Lamarre, J-M, Lasenby, A, Lattanzi, M, Lawrence, CR, Levrier, F, Liguori, M, Lilje, PB, Lindholm, V, López-Caniego, M, Ma, Y-Z, Macías-Pérez, JF, Maggio, G, Maino, D, Mandolesi, N, Mangilli, A, Maris, M, Martin, PG, Martínez-González, E, Matarrese, S, McEwen, JD, Meinhold, PR, Melchiorri, A, Mennella, A, Migliaccio, M, Miville-Deschênes, M-A, Molinari, D, and Moneti, A
- Subjects
Space Sciences ,Physical Sciences ,astro-ph.CO ,Astronomical and Space Sciences ,Astronomy & Astrophysics ,Astronomical sciences ,Particle and high energy physics ,Space sciences - Abstract
This paper presents the Planck Multi-frequency Catalogue of Non-thermal (i.e. synchrotron-dominated) Sources (PCNT) observed between 30 and 857 GHz by the ESA Planck mission. This catalogue was constructed by selecting objects detected in the full mission all-sky temperature maps at 30 and 143 GHz, with a signal-to-noise ratio (S/N)> 3 in at least one of the two channels after filtering with a particular Mexican hat wavelet. As a result, 29 400 source candidates were selected. Then, a multi-frequency analysis was performed using the Matrix Filters methodology at the position of these objects, and flux densities and errors were calculated for all of them in the nine Planck channels. This catalogue was built using a different methodology than the one adopted for the Planck Catalogue of Compact Sources (PCCS) and the Second Planck Catalogue of Compact Sources (PCCS2), although the initial detection was done with the same pipeline that was used to produce them. The present catalogue is the first unbiased, full-sky catalogue of synchrotron-dominated sources published at millimetre and submillimetre wavelengths and constitutes a powerful database for statistical studies of non-thermal extragalactic sources, whose emission is dominated by the central active galactic nucleus. Together with the full multi-frequency catalogue, we also define the Bright Planck Multi-frequency Catalogue of Non-thermal Sources (PCNTb), where only those objects with a S/N > 4 at both 30 and 143 GHz were selected. In this catalogue 1146 compact sources are detected outside the adopted Planck GAL070 mask; thus, these sources constitute a highly reliable sample of extragalactic radio sources. We also flag the high-significance subsample (PCNThs), a subset of 151 sources that are detected with S/Na, >, 4 in all nine Planck channels, 75 of which are found outside the Planck mask adopted here. The remaining 76 sources inside the Galactic mask are very likely Galactic objects.
- Published
- 2018
25. Planck intermediate results
- Author
-
Aghanim, N, Akrami, Y, Ashdown, M, Aumont, J, Baccigalupi, C, Ballardini, M, Banday, AJ, Barreiro, RB, Bartolo, N, Basak, S, Battye, R, Benabed, K, Bernard, J-P, Bersanelli, M, Bielewicz, P, Bond, JR, Borrill, J, Bouchet, FR, Burigana, C, Calabrese, E, Carron, J, Chiang, HC, Comis, B, Contreras, D, Crill, BP, Curto, A, Cuttaia, F, de Bernardis, P, de Rosa, A, de Zotti, G, Delabrouille, J, Di Valentino, E, Dickinson, C, Diego, JM, Doré, O, Ducout, A, Dupac, X, Elsner, F, Enßlin, TA, Eriksen, HK, Falgarone, E, Fantaye, Y, Finelli, F, Forastieri, F, Frailis, M, Fraisse, AA, Franceschi, E, Frolov, A, Galeotta, S, Galli, S, Ganga, K, Gerbino, M, Górski, KM, Gruppuso, A, Gudmundsson, JE, Handley, W, Hansen, FK, Herranz, D, Hivon, E, Huang, Z, Jaffe, AH, Keihänen, E, Keskitalo, R, Kiiveri, K, Kim, J, Kisner, TS, Krachmalnicoff, N, Kunz, M, Kurki-Suonio, H, Lamarre, J-M, Lasenby, A, Lattanzi, M, Lawrence, CR, Le Jeune, M, Levrier, F, Liguori, M, Lilje, PB, Lindholm, V, López-Caniego, M, Lubin, PM, Ma, Y-Z, Macías-Pérez, JF, Maggio, G, Maino, D, Mandolesi, N, Mangilli, A, Martin, PG, Martínez-González, E, Matarrese, S, Mauri, N, McEwen, JD, Melchiorri, A, Mennella, A, Migliaccio, M, Miville-Deschênes, M-A, Molinari, D, Moneti, A, Montier, L, Morgante, G, and Natoli, P
- Subjects
Astronomical Sciences ,Physical Sciences ,cosmic background radiation ,large-scale structure of Universe ,galaxies: clusters: general ,methods: data analysis ,astro-ph.CO ,Astronomical and Space Sciences ,Astronomy & Astrophysics ,Astronomical sciences ,Particle and high energy physics ,Space sciences - Abstract
Using the Planck full-mission data, we present a detection of the temperature (and therefore velocity) dispersion due to the kinetic Sunyaev-Zeldovich (kSZ) effect from clusters of galaxies. To suppress the primary CMB and instrumental noise we derive a matched filter and then convolve it with the Planck foreground-cleaned "2D-ILC" maps. By using the Meta Catalogue of X-ray detected Clusters of galaxies (MCXC), we determine the normalized rms dispersion of the temperature fluctuations at the positions of clusters, finding that this shows excess variance compared with the noise expectation. We then build an unbiased statistical estimator of the signal, determining that the normalized mean temperature dispersion of 1526 clusters is ((ΔT/T)2) = (1.64 ± 0.48) × 10-11. However, comparison with analytic calculations and simulations suggest that around 0.7 σ of this result is due to cluster lensing rather than the kSZ effect. By correcting this, the temperature dispersion is measured to be ((ΔT/T)2) = (1.35 ± 0.48) × 10-11, which gives a detection at the 2.8 σ level. We further convert uniform-weight temperature dispersion into a measurement of the line-of-sight velocity dispersion, by using estimates of the optical depth of each cluster (which introduces additional uncertainty into the estimate). We find that the velocity dispersion is (υ2) = (123 000 ± 71 000) (km s-1)2, which is consistent with findings from other large-scale structure studies, and provides direct evidence of statistical homogeneity on scales of 600 h-1 Mpc. Our study shows the promise of using cross-correlations of the kSZ effect with large-scale structure in order to constrain the growth of structure.
- Published
- 2018
26. Planck intermediate results. LI. Features in the cosmic microwave background temperature power spectrum and shifts in cosmological parameters
- Author
-
Planck Collaboration, Aghanim, N., Akrami, Y., Ashdown, M., Aumont, J., Ballardini, M., Banday, A. J., Barreiro, R. B., Bartolo, N., Basak, S., Benabed, K., Bersanelli, M., Bielewicz, P., Bonaldi, A., Bonavera, L., Bond, J. R., Borrill, J., Bouchet, F. R., Burigana, C., Calabrese, E., Cardoso, J. -F., Challinor, A., Chiang, H. C., Colombo, L. P. L., Combet, C., Crill, B. P., Curto, A., Cuttaia, F., de Bernardis, P., de Rosa, A., de Zotti, G., Delabrouille, J., Di Valentino, E., Dickinson, C., Diego, J. M., Doré, O., Ducout, A., Dupac, X., Dusini, S., Efstathiou, G., Elsner, F., Enßlin, T. A., Eriksen, H. K., Fantaye, Y., Finelli, F., Forastieri, F., Frailis, M., Franceschi, E., Frolov, A., Galeotta, S., Galli, S., Ganga, K., Génova-Santos, R. T., Gerbino, M., González-Nuevo, J., Górski, K. M., Gruppuso, A., Gudmundsson, J. E., Herranz, D., Hivon, E., Huang, Z., Jaffe, A. H., Jones, W. C., Keihänen, E., Keskitalo, R., Kiiveri, K., Kim, J., Kisner, T. S., Knox, L., Krachmalnicoff, N., Kunz, M., Kurki-Suonio, H., Lagache, G., Lamarre, J. -M., Lasenby, A., Lattanzi, M., Lawrence, C. R., Jeune, M. Le, Levrier, F., Lewis, A., Lilje, P. B., Lilley, M., Lindholm, V., López-Caniego, M., Lubin, P. M., Ma, Y. -Z., Macías-Pérez, J. F., Maggio, G., Maino, D., Mandolesi, N., Mangilli, A., Maris, M., Martin, P. G., Martínez-González, E., Matarrese, S., Mauri, N., McEwen, J. D., Meinhold, P. R., Mennella, A., Migliaccio, M., Millea, M., Miville-Deschênes, M. -A., Molinari, D., Moneti, A., Montier, L., Morgante, G., Moss, A., Narimani, A., Natoli, P., Oxborrow, C. A., Pagano, L., Paoletti, D., Patanchon, G., Patrizii, L., Pettorino, V., Piacentini, F., Polastri, L., Polenta, G., Puget, J. -L., Rachen, J. P., Racine, B., Reinecke, M., Remazeilles, M., Renzi, A., Rossetti, M., Roudier, G., Rubiño-Martín, J. A., Ruiz-Granados, B., Salvati, L., Sandri, M., Savelainen, M., Scott, D., Sirignano, C., Sirri, G., Stanco, L., Suur-Uski, A. -S., Tauber, J. A., Tavagnacco, D., Tenti, M., Toffolatti, L., Tomasi, M., Tristram, M., Trombetti, T., Valiviita, J., Van Tent, F., Vielva, P., Villa, F., Vittorio, N., Wandelt, B. D., Wehus, I. K., White, M., Zacchei, A., and Zonca, A.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
The six parameters of the standard $\Lambda$CDM model have best-fit values derived from the Planck temperature power spectrum that are shifted somewhat from the best-fit values derived from WMAP data. These shifts are driven by features in the Planck temperature power spectrum at angular scales that had never before been measured to cosmic-variance level precision. We investigate these shifts to determine whether they are within the range of expectation and to understand their origin in the data. Taking our parameter set to be the optical depth of the reionized intergalactic medium $\tau$, the baryon density $\omega_{\rm b}$, the matter density $\omega_{\rm m}$, the angular size of the sound horizon $\theta_*$, the spectral index of the primordial power spectrum, $n_{\rm s}$, and $A_{\rm s}e^{-2\tau}$ (where $A_{\rm s}$ is the amplitude of the primordial power spectrum), we examine the change in best-fit values between a WMAP-like large angular-scale data set (with multipole moment $\ell<800$ in the Planck temperature power spectrum) and an all angular-scale data set ($\ell<2500$ Planck temperature power spectrum), each with a prior on $\tau$ of $0.07\pm0.02$. We find that the shifts, in units of the 1$\sigma$ expected dispersion for each parameter, are $\{\Delta \tau, \Delta A_{\rm s} e^{-2\tau}, \Delta n_{\rm s}, \Delta \omega_{\rm m}, \Delta \omega_{\rm b}, \Delta \theta_*\} = \{-1.7, -2.2, 1.2, -2.0, 1.1, 0.9\}$, with a $\chi^2$ value of 8.0. We find that this $\chi^2$ value is exceeded in 15% of our simulated data sets, and that a parameter deviates by more than 2.2$\sigma$ in 9% of simulated data sets, meaning that the shifts are not unusually large. Comparing $\ell<800$ instead to $\ell>800$, or splitting at a different multipole, yields similar results. We examine the $\ell<800$ model residuals in the $\ell>800$ power spectrum data and find that the features there... [abridged], Comment: 22 pages, 17 figures, abstract abridged for Arxiv submission
- Published
- 2016
- Full Text
- View/download PDF
27. Planck intermediate results. L. Evidence for spatial variation of the polarized thermal dust spectral energy distribution and implications for CMB $B$-mode analysis
- Author
-
Planck Collaboration, Aghanim, N., Ashdown, M., Aumont, J., Baccigalupi, C., Ballardini, M., Banday, A. J., Barreiro, R. B., Bartolo, N., Basak, S., Benabed, K., Bernard, J. -P., Bersanelli, M., Bielewicz, P., Bonaldi, A., Bonavera, L., Bond, J. R., Borrill, J., Bouchet, F. R., Boulanger, F., Bracco, A., Burigana, C., Calabrese, E., Cardoso, J. -F., Chiang, H. C., Colombo, L. P. L., Combet, C., Comis, B., Crill, B. P., Curto, A., Cuttaia, F., Davis, R. J., de Bernardis, P., de Rosa, A., de Zotti, G., Delabrouille, J., Delouis, J. -M., Di Valentino, E., Dickinson, C., Diego, J. M., Doré, O., Douspis, M., Ducout, A., Dupac, X., Dusini, S., Efstathiou, G., Elsner, F., Enßlin, T. A., Eriksen, H. K., Falgarone, E., Fantaye, Y., Finelli, F., Frailis, M., Fraisse, A. A., Franceschi, E., Frolov, A., Galeotta, S., Galli, S., Ganga, K., Génova-Santos, R. T., Gerbino, M., Ghosh, T., Giard, M., González-Nuevo, J., Górski, K. M., Gregorio, A., Gruppuso, A., Gudmundsson, J. E., Hansen, F. K., Helou, G., Herranz, D., Hivon, E., Huang, Z., Jaffe, A. H., Jones, W. C., Keihänen, E., Keskitalo, R., Kisner, T. S., Krachmalnicoff, N., Kunz, M., Kurki-Suonio, H., Lagache, G., Lähteenmäki, A., Lamarre, J. -M., Lasenby, A., Lattanzi, M., Lawrence, C. R., Jeune, M. Le, Levrier, F., Liguori, M., Lilje, P. B., López-Caniego, M., Lubin, P. M., Macías-Pérez, J. F., Maggio, G., Maino, D., Mandolesi, N., Mangilli, A., Maris, M., Martin, P. G., Martínez-González, E., Matarrese, S., Mauri, N., McEwen, J. D., Melchiorri, A., Mennella, A., Migliaccio, M., Mitra, S., Miville-Deschênes, M. -A., Molinari, D., Moneti, A., Montier, L., Morgante, G., Moss, A., Naselsky, P., Nørgaard-Nielsen, H. U., Oxborrow, C. A., Pagano, L., Paoletti, D., Partridge, B., Patrizii, L., Perdereau, O., Perotto, L., Pettorino, V., Piacentini, F., Plaszczynski, S., Polenta, G., Puget, J. -L., Rachen, J. P., Reinecke, M., Remazeilles, M., Renzi, A., Rocha, G., Rossetti, M., Roudier, G., Rubiño-Martín, J. A., Ruiz-Granados, B., Salvati, L., Sandri, M., Savelainen, M., Scott, D., Sirignano, C., Sirri, G., Stanco, L., Suur-Uski, A. -S., Tauber, J. A., Tenti, M., Toffolatti, L., Tomasi, M., Tristram, M., Trombetti, T., Valiviita, J., Vansyngel, J., Van Tent, F., Vielva, P., Wandelt, B. D., Wehus, I. K., Zacchei, A., and Zonca, A.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
The characterization of the Galactic foregrounds has been shown to be the main obstacle in the challenging quest to detect primordial B-modes in the polarized microwave sky. We make use of the Planck-HFI 2015 data release at high frequencies to place new constraints on the properties of the polarized thermal dust emission at high Galactic latitudes. Here, we specifically study the spatial variability of the dust polarized spectral energy distribution, and its potential impact on the determination of the tensor-to-scalar ratio. We use the correlation ratio of the $C_\ell^{BB}$ angular power spectra between the 217- and 353-GHz channels as a tracer of these potential variations, computed on different high Galactic latitude regions, ranging from 80% to 20% of the sky. The new insight from Planck data is a departure of the correlation ratio from unity that cannot be attributed to a spurious decorrelation due to the cosmic microwave background, instrumental noise, or instrumental systematics. The effect is marginally detected on each region, but the statistical combination of all the regions gives more than 99% confidence for this variation in polarized dust properties. In addition, we show that the decorrelation increases when there is a decrease in the mean column density of the region of the sky being considered, and we propose a simple power-law empirical model for this dependence, which matches what is seen in the Planck data. We explore the effect that this measured decorrelation has on simulations of the BICEP2-Keck Array/Planck analysis and show that the 2015 constraints from those data still allow a decorrelation between the dust at 150 and 353GHz of the order of the one we measure. Finally we show that either spatial variation of the dust SED or of the dust polarization angle could produce decorrelations between 217- and 353-GHz data similar to those we observe in the data.
- Published
- 2016
- Full Text
- View/download PDF
28. Planck intermediate results. XLV. Radio spectra of northern extragalactic radio sources
- Author
-
Planck Collaboration, Ade, P. A. R., Aghanim, N., Arnaud, M., Ashdown, M., Aumont, J., Baccigalupi, C., Banday, A. J., Barreiro, R. B., Bartolo, N., Battaner, E., Battye, R., Benabed, K., Bendo, G. J., Benoit-Lévy, A., Bernard, J. -P., Bersanelli, M., Bielewicz, P., Bonaldi, A., Bonavera, L., Bond, J. R., Borrill, J., Bouchet, F. R., Burigana, C., Butler, R. C., Calabrese, E., Cardoso, J. -F., Catalano, A., Chamballu, A., Chary, R. -R., Chen, X., Chiang, H. C., Christensen, P. R., Clements, D. L., Colombo, L. P. L., Combet, C., Couchot, F., Coulais, A., Crill, B. P., Curto, A., Cuttaia, F., Danese, L., Davies, R. D., Davis, R. J., de Bernardis, P., de Rosa, A., de Zotti, G., Delabrouille, J., Dickinson, C., Diego, J. M., Dole, H., Donzelli, S., Doré, O., Douspis, M., Ducout, A., Dupac, X., Efstathiou, G., Elsner, F., Enßlin, T. A., Eriksen, H. K., Finelli, F., Forni, O., Frailis, M., Fraisse, A. A., Franceschi, E., Frejsel, A., Galeotta, S., Ganga, K., Giard, M., Giraud-Héraud, Y., Gjerløw, E., González-Nuevo, J., Górski, K. M., Gregorio, A., Gruppuso, A., Hansen, F. K., Hanson, D., Harrison, D. L., Henrot-Versillé, S., Hernández-Monteagudo, C., Herranz, D., Hildebrandt, S. R., Hivon, E., Hobson, M., Holmes, W. A., Hornstrup, A., Hovest, W., Huffenberger, K. M., Hurier, G., Israel, F. P., Jaffe, A. H., Jaffe, T. R., Jones, W. C., Juvela, M., Keihänen, E., Keskitalo, R., Kisner, T. S., Kneissl, R., Knoche, J., Kunz, M., Kurki-Suonio, H., Lagache, G., Lähteenmäki, A., Lamarre, J. -M., Lasenby, A., Lattanzi, M., Lawrence, C. R., Leonardi, R., Levrier, F., Liguori, M., Lilje, P. B., Linden-Vørnle, M., López-Caniego, M., Lubin, P. M., Macías-Pérez, J. F., Madden, S., Maffei, B., Maino, D., Mandolesi, N., Maris, M., Martin, P. G., Martínez-González, E., Masi, S., Matarrese, S., Mazzotta, P., Mendes, L., Mennella, A., Migliaccio, M., Miville-Deschênes, M. -A., Moneti, A., Montier, L., Morgante, G., Mortlock, D., Munshi, D., Murphy, J. A., Naselsky, P., Nati, F., Natoli, P., Nørgaard-Nielsen, H. U., Noviello, F., Novikov, D., Novikov, I., Oxborrow, C. A., Pagano, L., Pajot, F., Paladini, R., Paoletti, D., Partridge, B., Pasian, F., Pearson, T. J., Peel, M., Perdereau, O., Perrotta, F., Pettorino, V., Piacentini, F., Piat, M., Pierpaoli, E., Pietrobon, D., Plaszczynski, S., Pointecouteau, E., Polenta, G., Popa, L., Pratt, G. W., Prunet, S., Puget, J. -L., Rachen, J. P., Reinecke, M., Remazeilles, M., Renault, C., Ricciardi, S., Ristorcelli, I., Rocha, G., Rosset, C., Rossetti, M., Roudier, G., Rubiño-Martín, J. A., Rusholme, B., Sandri, M., Savini, G., Scott, D., Spencer, L. D., Stolyarov, V., Sudiwala, R., Sutton, D., Suur-Uski, A. -S., Sygnet, J. -F., Tauber, J. A., Terenzi, L., Toffolatti, L., Tomasi, M., Tristram, M., Tucci, M., Umana, G., Valenziano, L., Valiviita, J., Van Tent, B., Vielva, P., Villa, F., Wade, L. A., Wandelt, B. D., Watson, R., Wehus, I. K., Yvon, D., Zacchei, A., and Zonca, A.
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
Continuum spectra covering centimetre to submillimetre wavelengths are presented for a northern sample of 104 extragalactic radio sources, mainly active galactic nuclei, based on four-epoch Planck data. The nine Planck frequencies, from 30 to 857 GHz, are complemented by a set of simultaneous ground-based radio observations between 1.1 and 37 GHz. The single-survey Planck data confirm that the flattest high-frequency radio spectral indices are close to zero, indicating that the original accelerated electron energy spectrum is much harder than commonly thought, with power-law index around 1.5 instead of the canonical 2.5. The radio spectra peak at high frequencies and exhibit a variety of shapes. For a small set of low-z sources, we find a spectral upturn at high frequencies, indicating the presence of intrinsic cold dust. Variability can generally be approximated by achromatic variations, while sources with clear signatures of evolving shocks appear to be limited to the strongest outbursts., Comment: 39 pages, 113 figures. Accepted by A&A
- Published
- 2016
- Full Text
- View/download PDF
29. Planck intermediate results. XLVIII. Disentangling Galactic dust emission and cosmic infrared background anisotropies
- Author
-
Planck Collaboration, Aghanim, N., Ashdown, M., Aumont, J., Baccigalupi, C., Ballardini, M., Banday, A. J., Barreiro, R. B., Bartolo, N., Basak, S., Benabed, K., Bernard, J. -P., Bersanelli, M., Bielewicz, P., Bonavera, L., Bond, J. R., Borrill, J., Bouchet, F. R., Boulanger, F., Burigana, C., Calabrese, E., Cardoso, J. -F., Carron, J., Chiang, H. C., Colombo, L. P. L., Comis, B., Couchot, F., Coulais, A., Crill, B. P., Curto, A., Cuttaia, F., de Bernardis, P., de Zotti, G., Delabrouille, J., Di Valentino, E., Dickinson, C., Diego, J. M., Doré, O., Douspis, M., Ducout, A., Dupac, X., Dusini, S., Elsner, F., Enßlin, T. A., Eriksen, H. K., Falgarone, E., Fantaye, Y., Finelli, F., Forastieri, F., Frailis, M., Fraisse, A. A., Franceschi, E., Frolov, A., Galeotta, S., Galli, S., Ganga, K., Génova-Santos, R. T., Gerbino, M., Ghosh, T., Giraud-Héraud, Y., González-Nuevo, J., Górski, K. M., Gruppuso, A., Gudmundsson, J. E., Hansen, F. K., Helou, G., Henrot-Versillé, S., Herranz, D., Hivon, E., Huang, Z., Jaffe, A. H., Jones, W. C., Keihänen, E., Keskitalo, R., Kiiveri, K., Kisner, T. S., Krachmalnicoff, N., Kunz, M., Kurki-Suonio, H., Lamarre, J. -M., Langer, M., Lasenby, A., Lattanzi, M., Lawrence, C. R., Jeune, M. Le, Levrier, F., Lilje, P. B., Lilley, M., Lindholm, V., López-Caniego, M., Ma, Y. -Z., Macías-Pérez, J. F., Maggio, G., Maino, D., Mandolesi, N., Mangilli, A., Maris, M., Martin, P. G., Martínez-González, E., Matarrese, S., Mauri, N., McEwen, J. D., Melchiorri, A., Mennella, A., Migliaccio, M., Miville-Deschênes, M. -A., Molinari, D., Moneti, A., Montier, L., Morgante, G., Moss, A., Natoli, P., Oxborrow, C. A., Pagano, L., Paoletti, D., Patanchon, G., Perdereau, O., Perotto, L., Pettorino, V., Piacentini, F., Plaszczynski, S., Polastri, L., Polenta, G., Puget, J. -L., Rachen, J. P., Racine, B., Reinecke, M., Remazeilles, M., Renzi, A., Rocha, G., Rosset, C., Rossetti, M., Roudier, G., Rubiño-Martín, J. A., Ruiz-Granados, B., Salvati, L., Sandri, M., Savelainen, M., Scott, D., Sirignano, C., Sirri, G., Soler, J. D., Spencer, L. D., Suur-Uski, A. -S., Tauber, J. A., Tavagnacco, D., Tenti, M., Toffolatti, L., Tomasi, M., Tristram, M., Trombetti, T., Valiviita, J., Van Tent, F., Vielva, P., Villa, F., Vittorio, N., Wandelt, B. D., Wehus, I. K., Zacchei, A., and Zonca, A.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics ,Astrophysics - Astrophysics of Galaxies ,Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
Using the Planck 2015 data release (PR2) temperature maps, we separate Galactic thermal dust emission from cosmic infrared background (CIB) anisotropies. For this purpose, we implement a specifically tailored component-separation method, the so-called generalized needlet internal linear combination (GNILC) method, which uses spatial information (the angular power spectra) to disentangle the Galactic dust emission and CIB anisotropies. We produce significantly improved all-sky maps of Planck thermal dust emission, with reduced CIB contamination, at 353, 545, and 857 GHz. By reducing the CIB contamination of the thermal dust maps, we provide more accurate estimates of the local dust temperature and dust spectral index over the sky with reduced dispersion, especially at high Galactic latitudes above $b = \pm 20{\deg}$. We find that the dust temperature is $T = (19.4 \pm 1.3)$ K and the dust spectral index is $\beta = 1.6 \pm 0.1$ averaged over the whole sky, while $T = (19.4 \pm 1.5)$ K and $\beta = 1.6 \pm 0.2$ on 21 % of the sky at high latitudes. Moreover, subtracting the new CIB-removed thermal dust maps from the CMB-removed Planck maps gives access to the CIB anisotropies over 60 % of the sky at Galactic latitudes $|b| > 20{\deg}$. Because they are a significant improvement over previous Planck products, the GNILC maps are recommended for thermal dust science. The new CIB maps can be regarded as indirect tracers of the dark matter and they are recommended for exploring cross-correlations with lensing and large-scale structure optical surveys. The reconstructed GNILC thermal dust and CIB maps are delivered as Planck products., Comment: 26 pages, 25 figures (reduced in quality for arXiv), 1 table. Updated to match version accepted by A&A
- Published
- 2016
- Full Text
- View/download PDF
30. Planck intermediate results. XLIX. Parity-violation constraints from polarization data
- Author
-
Planck Collaboration, Aghanim, N., Ashdown, M., Aumont, J., Baccigalupi, C., Ballardini, M., Banday, A. J., Barreiro, R. B., Bartolo, N., Basak, S., Benabed, K., Bernard, J. -P., Bersanelli, M., Bielewicz, P., Bonavera, L., Bond, J. R., Borrill, J., Bouchet, F. R., Burigana, C., Calabrese, E., Cardoso, J. -F., Carron, J., Chiang, H. C., Colombo, L. P. L., Comis, B., Contreras, D., Couchot, F., Coulais, A., Crill, B. P., Curto, A., Cuttaia, F., de Bernardis, P., de Rosa, A., de Zotti, G., Delabrouille, J., Désert, F. -X., Di Valentino, E., Dickinson, C., Diego, J. M., Doré, O., Ducout, A., Dupac, X., Dusini, S., Elsner, F., Enßlin, T. A., Eriksen, H. K., Fantaye, Y., Finelli, F., Forastieri, F., Frailis, M., Franceschi, E., Frolov, A., Galeotta, S., Galli, S., Ganga, K., Génova-Santos, R. T., Gerbino, M., Giraud-Héraud, Y., González-Nuevo, J., Górski, K. M., Gruppuso, A., Gudmundsson, J. E., Hansen, F. K., Henrot-Versillé, S., Herranz, D., Hivon, E., Huang, Z., Jaffe, A. H., Jones, W. C., Keihänen, E., Keskitalo, R., Kiiveri, K., Krachmalnicoff, N., Kunz, M., Kurki-Suonio, H., Lamarre, J. -M., Langer, M., Lasenby, A., Lattanzi, M., Lawrence, C. R., Jeune, M. Le, Leahy, J. P., Levrier, F., Liguori, M., Lilje, P. B., Lindholm, V., López-Caniego, M., Ma, Y. -Z., Macías-Pérez, J. F., Maggio, G., Maino, D., Mandolesi, N., Maris, M., Martin, P. G., Martínez-González, E., Matarrese, S., Mauri, N., McEwen, J. D., Meinhold, P. R., Melchiorri, A., Mennella, A., Migliaccio, M., Miville-Deschênes, M. -A., Molinari, D., Moneti, A., Morgante, G., Moss, A., Natoli, P., Pagano, L., Paoletti, D., Patanchon, G., Patrizii, L., Perotto, L., Pettorino, V., Piacentini, F., Polastri, L., Polenta, G., Rachen, J. P., Racine, B., Reinecke, M., Remazeilles, M., Renzi, A., Rocha, G., Rosset, C., Rossetti, M., Roudier, G., Rubiño-Martín, J. A., Ruiz-Granados, B., Sandri, M., Savelainen, M., Scott, D., Sirignano, C., Sirri, G., Spencer, L. D., Suur-Uski, A. -S., Tauber, J. A., Tavagnacco, D., Tenti, M., Toffolatti, L., Tomasi, M., Tristram, M., Trombetti, T., Valiviita, J., Van Tent, F., Vielva, P., Villa, F., Vittorio, N., Wandelt, B. D., Wehus, I. K., Zacchei, A., and Zonca, A.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Parity violating extensions of the standard electromagnetic theory cause in vacuo rotation of the plane of polarization of propagating photons. This effect, also known as cosmic birefringence, impacts the cosmic microwave background (CMB) anisotropy angular power spectra, producing non-vanishing $T$--$B$ and $E$--$B$ correlations that are otherwise null when parity is a symmetry. Here we present new constraints on an isotropic rotation, parametrized by the angle $\alpha$, derived from Planck 2015 CMB polarization data. To increase the robustness of our analyses, we employ two complementary approaches, in harmonic space and in map space, the latter based on a peak stacking technique. The two approaches provide estimates for $\alpha$ that are in agreement within statistical uncertainties and very stable against several consistency tests. Considering the $T$--$B$ and $E$--$B$ information jointly, we find $\alpha = 0.31^{\circ} \pm 0.05^{\circ} \, ({\rm stat.})\, \pm 0.28^{\circ} \, ({\rm syst.})$ from the harmonic analysis and $\alpha = 0.35^{\circ} \pm 0.05^{\circ} \, ({\rm stat.})\, \pm 0.28^{\circ} \, ({\rm syst.})$ from the stacking approach. These constraints are compatible with no parity violation and are dominated by the systematic uncertainty in the orientation of Planck's polarization-sensitive bolometers., Comment: 15 pages, 8 figures. Accepted for publication in Astronomy and Astrophysics
- Published
- 2016
- Full Text
- View/download PDF
31. Planck intermediate results. XLVII. Planck constraints on reionization history
- Author
-
Planck Collaboration, Adam, R., Aghanim, N., Ashdown, M., Aumont, J., Baccigalupi, C., Ballardini, M., Banday, A. J., Barreiro, R. B., Bartolo, N., Basak, S., Battye, R., Benabed, K., Bernard, J. -P., Bersanelli, M., Bielewicz, P., Bock, J. J., Bonaldi, A., Bonavera, L., Bond, J. R., Borrill, J., Bouchet, F. R., Bucher, M., Burigana, C., Calabrese, E., Cardoso, J. -F., Carron, J., Chiang, H. C., Colombo, L. P. L., Combet, C., Comis, B., Coulais, A., Crill, B. P., Curto, A., Cuttaia, F., Davis, R. J., de Bernardis, P., de Rosa, A., de Zotti, G., Delabrouille, J., Di Valentino, E., Dickinson, C., Diego, J. M., Doré, O., Douspis, M., Ducout, A., Dupac, X., Elsner, F., Enßlin, T. A., Eriksen, H. K., Falgarone, E., Fantaye, Y., Finelli, F., Forastieri, F., Frailis, M., Fraisse, A. A., Franceschi, E., Frolov, A., Galeotta, S., Galli, S., Ganga, K., Génova-Santos, R. T., Gerbino, M., Ghosh, T., González-Nuevo, J., Górski, K. M., Gruppuso, A., Gudmundsson, J. E., Hansen, F. K., Helou, G., Henrot-Versillé, S., Herranz, D., Hivon, E., Huang, Z., Ili_, S., Jaffe, A. H., Jones, W. C., Keihänen, E., Keskitalo, R., Kisner, T. S., Knox, L., Krachmalnicoff, N., Kunz, M., Kurki-Suonio, H., Lagache, G., Lähteenmäki, A., Lamarre, J. -M., Langer, M., Lasenby, A., Lattanzi, M., Lawrence, C. R., Jeune, M. Le, Levrier, F., Lewis, A., Liguori, M., Lilje, P. B., López-Caniego, M., Ma, Y. -Z., Macías-Pérez, J. F., Maggio, G., Mangilli, A., Maris, M., Martin, P. G., Martínez-González, E., Matarrese, S., Mauri, N., McEwen, J. D., Meinhold, P. R., Melchiorri, A., Mennella, A., Migliaccio, M., Miville-Deschênes, M. -A., Molinari, D., Moneti, A., Montier, L., Morgante, G., Moss, A., Naselsky, P., Natoli, P., Oxborrow, C. A., Pagano, L., Paoletti, D., Partridge, B., Patanchon, G., Patrizii, L., Perdereau, O., Perotto, L., Pettorino, V., Piacentini, F., Plaszczynski, S., Polastri, L., Polenta, G., Puget, J. -L., Rachen, J. P., Racine, B., Reinecke, M., Remazeilles, M., Renzi, A., Rocha, G., Rossetti, M., Roudier, G., Rubiño-Martín, J. A., Ruiz-Granados, B., Salvati, L., Sandri, M., Savelainen, M., Scott, D., Sirri, G., Sunyaev, R., Suur-Uski, A. -S., Tauber, J. A., Tenti, M., Toffolatti, L., Tomasi, M., Tristram, M., Trombetti, T., Valiviita, J., Van Tent, F., Vielva, P., Villa, F., Vittorio, N., Wandelt, B. D., Wehus, I. K., White, M., Zacchei, A., and Zonca, A.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We investigate constraints on cosmic reionization extracted from the Planck cosmic microwave background (CMB) data. We combine the Planck CMB anisotropy data in temperature with the low-multipole polarization data to fit LCDM models with various parameterizations of the reionization history. We obtain a Thomson optical depth tau=0.058 +/- 0.012 for the commonly adopted instantaneous reionization model. This confirms, with only data from CMB anisotropies, the low value suggested by combining Planck 2015 results with other data sets and also reduces the uncertainties. We reconstruct the history of the ionization fraction using either a symmetric or an asymmetric model for the transition between the neutral and ionized phases. To determine better constraints on the duration of the reionization process, we also make use of measurements of the amplitude of the kinetic Sunyaev-Zeldovich (kSZ) effect using additional information from the high resolution Atacama Cosmology Telescope and South Pole Telescope experiments. The average redshift at which reionization occurs is found to lie between z=7.8 and 8.8, depending on the model of reionization adopted. Using kSZ constraints and a redshift-symmetric reionization model, we find an upper limit to the width of the reionization period of Dz < 2.8. In all cases, we find that the Universe is ionized at less than the 10% level at redshifts above z~10. This suggests that an early onset of reionization is strongly disfavoured by the Planck data. We show that this result also reduces the tension between CMB-based analyses and constraints from other astrophysical sources., Comment: 19 pages, 18 figures. accepted in A&A
- Published
- 2016
- Full Text
- View/download PDF
32. Planck intermediate results. XLVI. Reduction of large-scale systematic effects in HFI polarization maps and estimation of the reionization optical depth
- Author
-
Planck Collaboration, Aghanim, N., Ashdown, M., Aumont, J., Baccigalupi, C., Ballardini, M., Banday, A. J., Barreiro, R. B., Bartolo, N., Basak, S., Battye, R., Benabed, K., Bernard, J. -P., Bersanelli, M., Bielewicz, P., Bock, J. J., Bonaldi, A., Bonavera, L., Bond, J. R., Borrill, J., Bouchet, F. R., Boulanger, F., Bucher, M., Burigana, C., Butler, R. C., Calabrese, E., Cardoso, J. -F., Carron, J., Challinor, A., Chiang, H. C., Colombo, L. P. L., Combet, C., Comis, B., Coulais, A., Crill, B. P., Curto, A., Cuttaia, F., Davis, R. J., de Bernardis, P., de Rosa, A., de Zotti, G., Delabrouille, J., Delouis, J. -M., Di Valentino, E., Dickinson, C., Diego, J. M., Doré, O., Douspis, M., Ducout, A., Dupac, X., Efstathiou, G., Elsner, F., Enßlin, T. A., Eriksen, H. K., Falgarone, E., Fantaye, Y., Finelli, F., Forastieri, F., Frailis, M., Fraisse, A. A., Franceschi, E., Frolov, A., Galeotta, S., Galli, S., Ganga, K., Génova-Santos, R. T., Gerbino, M., Ghosh, T., González-Nuevo, J., Górski, K. M., Gratton, S., Gruppuso, A., Gudmundsson, J. E., Hansen, F. K., Helou, G., Henrot-Versillé, S., Herranz, D., Hivon, E., Huang, Z., Ilic, S., Jaffe, A. H., Jones, W. C., Keihänen, E., Keskitalo, R., Kisner, T. S., Knox, L., Krachmalnicoff, N., Kunz, M., Kurki-Suonio, H., Lagache, G., Lamarre, J. -M., Langer, M., Lasenby, A., Lattanzi, M., Lawrence, C. R., Jeune, M. Le, Leahy, J. P., Levrier, F., Liguori, M., Lilje, P. B., López-Caniego, M., Ma, Y. -Z., Macías-Pérez, J. F., Maggio, G., Mangilli, A., Maris, M., Martin, P. G., Martínez-González, E., Matarrese, S., Mauri, N., McEwen, J. D., Meinhold, P. R., Melchiorri, A., Mennella, A., Migliaccio, M., Miville-Deschênes, M. -A., Molinari, D., Moneti, A., Montier, L., Morgante, G., Moss, A., Mottet, S., Naselsky, P., Natoli, P., Oxborrow, C. A., Pagano, L., Paoletti, D., Partridge, B., Patanchon, G., Patrizii, L., Perdereau, O., Perotto, L., Pettorino, V., Piacentini, F., Plaszczynski, S., Polastri, L., Polenta, G., Puget, J. -L., Rachen, J. P., Racine, B., Reinecke, M., Remazeilles, M., Renzi, A., Rocha, G., Rossetti, M., Roudier, G., Rubiño-Martín, J. A., Ruiz-Granados, B., Salvati, L., Sandri, M., Savelainen, M., Scott, D., Sirri, G., Sunyaev, R., Suur-Uski, A. -S., Tauber, J. A., Tenti, M., Toffolatti, L., Tomasi, M., Tristram, M., Trombetti, T., Valiviita, J., Van Tent, F., Vibert, L., Vielva, P., Villa, F., Vittorio, N., Wandelt, B. D., Watson, R., Wehus, I. K., White, M., Zacchei, A., and Zonca, A.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
This paper describes the identification, modelling, and removal of previously unexplained systematic effects in the polarization data of the Planck High Frequency Instrument (HFI) on large angular scales, including new mapmaking and calibration procedures, new and more complete end-to-end simulations, and a set of robust internal consistency checks on the resulting maps. These maps, at 100, 143, 217, and 353 GHz, are early versions of those that will be released in final form later in 2016. The improvements allow us to determine the cosmic reionization optical depth $\tau$ using, for the first time, the low-multipole $EE$ data from HFI, reducing significantly the central value and uncertainty, and hence the upper limit. Two different likelihood procedures are used to constrain $\tau$ from two estimators of the CMB $E$- and $B$-mode angular power spectra at 100 and 143 GHz, after debiasing the spectra from a small remaining systematic contamination. These all give fully consistent results. A further consistency test is performed using cross-correlations derived from the Low Frequency Instrument maps of the Planck 2015 data release and the new HFI data. For this purpose, end-to-end analyses of systematic effects from the two instruments are used to demonstrate the near independence of their dominant systematic error residuals. The tightest result comes from the HFI-based $\tau$ posterior distribution using the maximum likelihood power spectrum estimator from $EE$ data only, giving a value $0.055\pm 0.009$. In a companion paper these results are discussed in the context of the best-fit Planck $\Lambda$CDM cosmological model and recent models of reionization., Comment: 53 pages, corresponding author: J.-L. Puget, submitted to Astronomy and Astrophysics
- Published
- 2016
- Full Text
- View/download PDF
33. Planck intermediate results. XLIV. The structure of the Galactic magnetic field from dust polarization maps of the southern Galactic cap
- Author
-
Planck Collaboration, Aghanim, N., Alves, M. I. R., Arzoumanian, D., Aumont, J., Baccigalupi, C., Ballardini, M., Banday, A. J., Barreiro, R. B., Bartolo, N., Basak, S., Benabed, K., Bernard, J. -P., Bersanelli, M., Bielewicz, P., Bonavera, L., Bond, J. R., Borrill, J., Bouchet, F. R., Boulanger, F., Bracco, A., Bucher, M., Burigana, C., Calabrese, E., Cardoso, J. -F., Chiang, H. C., Colombo, L. P. L., Combet, C., Comis, B., Couchot, F., Coulais, A., Crill, B. P., Curto, A., Cuttaia, F., Davis, R. J., de Bernardis, P., de Rosa, A., de Zotti, G., Delabrouille, J., Delouis, J. -M., Di Valentino, E., Dickinson, C., Diego, J. M., Doré, O., Douspis, M., Ducout, A., Dupac, X., Dusini, S., Efstathiou, G., Elsner, F., Enßlin, T. A., Eriksen, H. K., Falgarone, E., Fantaye, Y., Ferrière, K., Finelli, F., Frailis, M., Fraisse, A. A., Franceschi, E., Frolov, A., Galeotta, S., Galli, S., Ganga, K., Génova-Santos, R. T., Gerbino, M., Ghosh, T., González-Nuevo, J., Górski, K. M., Gratton, S., Gregorio, A., Gruppuso, A., Gudmundsson, J. E., Guillet, V., Hansen, F. K., Helou, G., Henrot-Versillé, S., Herranz, D., Hivon, E., Huang, Z., Jaffe, A. H., Jaffe, T. R., Jones, W. C., Keihänen, E., Keskitalo, R., Kisner, T. S., Krachmalnicoff, N., Kunz, M., Kurki-Suonio, H., Lagache, G., Lähteenmäki, A., Lamarre, J. -M., Langer, M., Lasenby, A., Lattanzi, M., Jeune, M. Le, Levrier, F., Liguori, M., Lilje, P. B., López-Caniego, M., Lubin, P. M., Macías-Pérez, J. F., Maggio, G., Maino, D., Mandolesi, N., Mangilli, A., Maris, M., Martin, P. G., Martínez-González, E., Matarrese, S., Mauri, N., McEwen, J. D., Melchiorri, A., Mennella, A., Migliaccio, M., Miville-Deschênes, M. -A., Molinari, D., Moneti, A., Montier, L., Morgante, G., Moss, A., Naselsky, P., Natoli, P., Neveu, J., Nørgaard-Nielsen, H. U., Oppermann, N., Oxborrow, C. A., Pagano, L., Paoletti, D., Partridge, B., Perdereau, O., Perotto, L., Pettorino, V., Piacentini, F., Plaszczynski, S., Polenta, G., Rachen, J. P., Rebolo, R., Reinecke, M., Remazeilles, M., Renzi, A., Ristorcelli, I., Rocha, G., Rossetti, M., Roudier, G., Ruiz-Granados, B., Salvati, L., Sandri, M., Savelainen, M., Scott, D., Sirignano, C., Soler, J. D., Suur-Uski, A. -S., Tauber, J. A., Tavagnacco, D., Tenti, M., Toffolatti, L., Tomasi, M., Tristram, M., Trombetti, T., Valiviita, J., Vansyngel, F., Van Tent, F., Vielva, P., Villa, F., Wandelt, B. D., Wehus, I. K., Zacchei, A., and Zonca, A.
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
We study the statistical properties of interstellar dust polarization at high Galactic latitude, using the Stokes parameter Planck maps at 353 GHz. Our aim is to advance the understanding of the magnetized interstellar medium (ISM), and to provide a model of the polarized dust foreground for cosmic microwave background component-separation procedures. Focusing on the southern Galactic cap, we examine the statistical distributions of the polarization fraction ($p$) and angle ($\psi$) to characterize the ordered and turbulent components of the Galactic magnetic field (GMF) in the solar neighbourhood. We relate patterns at large angular scales in polarization to the orientation of the mean (ordered) GMF towards Galactic coordinates $(l_0,b_0)=(70^\circ \pm 5^\circ,24^\circ \pm 5^\circ)$. The histogram of $p$ shows a wide dispersion up to 25 %. The histogram of $\psi$ has a standard deviation of $12^\circ$ about the regular pattern expected from the ordered GMF. We use these histograms to build a phenomenological model of the turbulent component of the GMF, assuming a uniform effective polarization fraction ($p_0$) of dust emission. To model the Stokes parameters, we approximate the integration along the line of sight (LOS) as a sum over a set of $N$ independent polarization layers, in each of which the turbulent component of the GMF is obtained from Gaussian realizations of a power-law power spectrum. We are able to reproduce the observed $p$ and $\psi$ distributions using: a $p_0$ value of (26 $\pm$ 3)%; a ratio of 0.9 $\pm$ 0.1 between the strengths of the turbulent and mean components of the GMF; and a small value of $N$. We relate the polarization layers to the density structure and to the correlation length of the GMF along the LOS.
- Published
- 2016
- Full Text
- View/download PDF
34. Planck intermediate results. XLIII. The spectral energy distribution of dust in clusters of galaxies
- Author
-
Planck Collaboration, Adam, R., Ade, P. A. R., Aghanim, N., Ashdown, M., Aumont, J., Baccigalupi, C., Barreiro, R. B., Bartolo, N., Battaner, E., Benabed, K., Benoit-Lévy, A., Bersanelli, M., Bielewicz, P., Bikmaev, I., Bonaldi, A., Bond, J. R., Borrill, J., Bouchet, F. R., Burenin, R., Burigana, C., Calabrese, E., Cardoso, J. -F., Catalano, A., Chiang, H. C., Christensen, P. R., Churazov, E., Colombo, L. P. L., Combet, C., Comis, B., Couchot, F., Crill, B. P., Curto, A., Cuttaia, F., Danese, L., Davis, R. J., de Bernardis, P., de Rosa, A., de Zotti, G., Delabrouille, J., Désert, F. -X., Diego, J. M., Dole, H., Doré, O., Douspis, M., Ducout, A., Dupac, X., Elsner, F., Enßlin, T. A., Finelli, F., Forni, O., Frailis, M., Fraisse, A. A., Franceschi, E., Galeotta, S., Ganga, K., Génova-Santos, R. T., Giard, M., Giraud-Héraud, Y., Gjerløw, E., González-Nuevo, J., Gregorio, A., Gruppuso, A., Gudmundsson, J. E., Hansen, F. K., Harrison, D. L., Hernández-Monteagudo, C., Herranz, D., Hildebrandt, S. R., Hivon, E., Hobson, M., Hornstrup, A., Hovest, W., Hurier, G., Jaffe, A. H., Jaffe, T. R., Jones, W. C., Keihänen, E., Keskitalo, R., Khamitov, I., Kisner, T. S., Kneissl, R., Knoche, J., Kunz, M., Kurki-Suonio, H., Lagache, G., Lähteenmäki, A., Lamarre, J. -M., Lasenby, A., Lattanzi, M., Lawrence, C. R., Leonardi, R., Levrier, F., Liguori, M., Lilje, P. B., Linden-Vørnle, M., López-Caniego, M., Macías-Pérez, J. F., Maffei, B., Maggio, G., Mandolesi, N., Mangilli, A., Maris, M., Martin, P. G., Martínez-González, E., Masi, S., Matarrese, S., Melchiorri, A., Mennella, A., Migliaccio, M., Miville-Deschênes, M. -A., Moneti, A., Montier, L., Morgante, G., Mortlock, D., Munshi, D., Murphy, J. A., Naselsky, P., Nati, F., Natoli, P., Nørgaard-Nielsen, H. U., Novikov, D., Novikov, I., Oxborrow, C. A., Pagano, L., Pajot, F., Paoletti, D., Pasian, F., Perdereau, O., Perotto, L., Pettorino, V., Piacentini, F., Piat, M., Plaszczynski, S., Pointecouteau, E., Polenta, G., Ponthieu, N., Pratt, G. W., Prunet, S., Puget, J. -L., Rachen, J. P., Rebolo, R., Reinecke, M., Remazeilles, M., Renault, C., Renzi, A., Ristorcelli, I., Rocha, G., Rosset, C., Rossetti, M., Roudier, G., Rubiño-Martín, J. A., Rusholme, B., Santos, D., Savelainen, M., Savini, G., Scott, D., Stolyarov, V., Stompor, R., Sudiwala, R., Sunyaev, R., Sutton, D., Suur-Uski, A. -S., Sygnet, J. -F., Tauber, J. A., Terenzi, L., Toffolatti, L., Tomasi, M., Tristram, M., Tucci, M., Valenziano, L., Valiviita, J., Van Tent, F., Vielva, P., Villa, F., Wade, L. A., Wehus, I. K., Yvon, D., Zacchei, A., and Zonca, A.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Although infrared (IR) overall dust emission from clusters of galaxies has been statistically detected using data from the Infrared Astronomical Satellite (IRAS), it has not been possible to sample the spectral energy distribution (SED) of this emission over its peak, and thus to break the degeneracy between dust temperature and mass. By complementing the IRAS spectral coverage with Planck satellite data from 100 to 857 GHz, we provide new constraints on the IR spectrum of thermal dust emission in clusters of galaxies. We achieve this by using a stacking approach for a sample of several hundred objects from the Planck cluster sample; this procedure averages out fluctuations from the IR sky, allowing us to reach a significant detection of the faint cluster contribution. We also use the large frequency range probed by Planck, together with component-separation techniques, to remove the contamination from both cosmic microwave background anisotropies and the thermal Sunyaev-Zeldovich effect (tSZ) signal, which dominate below 353 GHz. By excluding dominant spurious signals or systematic effects, averaged detections are reported at frequencies between 353 and 5000 GHz. We confirm the presence of dust in clusters of galaxies at low and intermediate redshifts, yielding an SED with a shape similar to that of the Milky Way. Planck's beam does not allow us to investigate the detailed spatial distribution of this emission (e.g., whether it comes from intergalactic dust or simply the dust content of the cluster galaxies), but the radial distribution of the emission appears to follow that of the stacked SZ signal, and thus the extent of the clusters. The recovered SED allows us to constrain the dust mass responsible for the signal, as well as its temperature. We additionally explore the evolution of the IR emission as a function of cluster mass and redshift., Comment: 14 pages and 7 figures. Submitted to A&A
- Published
- 2016
- Full Text
- View/download PDF
35. Planck intermediate results. XLII. Large-scale Galactic magnetic fields
- Author
-
Planck Collaboration, Adam, R., Ade, P. A. R., Alves, M. I. R., Ashdown, M., Aumont, J., Baccigalupi, C., Banday, A. J., Barreiro, R. B., Bartolo, N., Battaner, E., Benabed, K., Benoit-Lévy, A., Bernard, J. -P., Bersanelli, M., Bielewicz, P., Bonavera, L., Bond, J. R., Borrill, J., Bouchet, F. R., Boulanger, F., Bucher, M., Burigana, C., Butler, R. C., Calabrese, E., Cardoso, J. -F., Catalano, A., Chiang, H. C., Christensen, P. R., Colombo, L. P. L., Combet, C., Couchot, F., Crill, B. P., Curto, A., Cuttaia, F., Danese, L., Davis, R. J., de Bernardis, P., de Rosa, A., de Zotti, G., Delabrouille, J., Dickinson, C., Diego, J. M., Dolag, K., Doré, O., Ducout, A., Dupac, X., Elsner, F., Enßlin, T. A., Eriksen, H. K., Ferrière, K., Finelli, F., Forni, O., Frailis, M., Fraisse, A. A., Franceschi, E., Galeotta, S., Ganga, K., Ghosh, T., Giard, M., Gjerløw, E., González-Nuevo, J., Górski, K. M., Gregorio, A., Gruppuso, A., Gudmundsson, J. E., Hansen, F. K., Harrison, D. L., Hernández-Monteagudo, C., Herranz, D., Hildebrandt, S. R., Hobson, M., Hornstrup, A., Hurier, G., Jaffe, A. H., Jaffe, T. R., Jones, W. C., Juvela, M., Keihänen, E., Keskitalo, R., Kisner, T. S., Knoche, J., Kunz, M., Kurki-Suonio, H., Lamarre, J. -M., Lasenby, A., Lattanzi, M., Lawrence, C. R., Leahy, J. P., Leonardi, R., Levrier, F., Liguori, M., Lilje, P. B., Linden-Vørnle, M., López-Caniego, M., Lubin, P. M., Macías-Pérez, J. F., Maggio, G., Maino, D., Mandolesi, N., Mangilli, A., Maris, M., Martin, P. G., Martínez-González, E., Masi, S., Matarrese, S., Melchiorri, A., Mennella, A., Migliaccio, M., Miville-Deschênes, M. -A., Moneti, A., Montier, L., Morgante, G., Munshi, D., Murphy, J. A., Naselsky, P., Nati, F., Natoli, P., Nørgaard-Nielsen, H. U., Oppermann, N., Orlando, E., Pagano, L., Pajot, F., Paladini, R., Paoletti, D., Pasian, F., Perotto, L., Pettorino, V., Piacentini, F., Piat, M., Pierpaoli, E., Plaszczynski, S., Pointecouteau, E., Polenta, G., Ponthieu, N., Pratt, G. W., Prunet, S., Puget, J. -L., Rachen, J. P., Reinecke, M., Remazeilles, M., Renault, C., Renzi, A., Ristorcelli, I., Rocha, G., Rossetti, M., Roudier, G., Rubiño-Martín, J. A., Rusholme, B., Sandri, M., Santos, D., Savelainen, M., Scott, D., Spencer, L. D., Stolyarov, V., Stompor, R., Strong, A. W., Sudiwala, R., Sunyaev, R., Suur-Uski, A. -S., Sygnet, J. -F., Tauber, J. A., Terenzi, L., Toffolatti, L., Tomasi, M., Tristram, M., Tucci, M., Valenziano, L., Valiviita, J., Van Tent, F., Vielva, P., Villa, F., Wade, L. A., Wandelt, B. D., Wehus, I. K., Yvon, D., Zacchei, A., and Zonca, A.
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
Recent models for the large-scale Galactic magnetic fields in the literature have been largely constrained by synchrotron emission and Faraday rotation measures. We use three different but representative models to compare their predicted polarized synchrotron and dust emission with that measured by the Planck satellite. We first update these models to match the Planck synchrotron products using a common model for the cosmic-ray leptons. We discuss the impact on this analysis of the ongoing problems of component separation in the Planck microwave bands and of the uncertain cosmic-ray spectrum. In particular, the inferred degree of ordering in the magnetic fields is sensitive to these systematic uncertainties, and we further show the importance of considering the expected variations in the observables in addition to their mean morphology. We then compare the resulting simulated emission to the observed dust polarization and find that the dust predictions do not match the morphology in the Planck data but underpredict the dust polarization away from the plane. We modify one of the models to roughly match both observables at high latitudes by increasing the field ordering in the thin disc near the observer. Though this specific analysis is dependent on the component separation issues, we present the improved model as a proof of concept for how these studies can be advanced in future using complementary information from ongoing and planned observational projects., Comment: 31 pages, 16 figures, updated to match accepted A&A version
- Published
- 2016
- Full Text
- View/download PDF
36. Planck intermediate results. XLI. A map of lensing-induced B-modes
- Author
-
Planck Collaboration, Ade, P. A. R., Aghanim, N., Ashdown, M., Aumont, J., Baccigalupi, C., Banday, A. J., Barreiro, R. B., Bartolo, N., Basak, S., Battaner, E., Benabed, K., Benoit-Lévy, A., Bernard, J. -P., Bersanelli, M., Bielewicz, P., Bock, J. J., Bonaldi, A., Bonavera, L., Bond, J. R., Borrill, J., Bouchet, F. R., Boulanger, F., Burigana, C., Butler, R. C., Calabrese, E., Cardoso, J. -F., Catalano, A., Chiang, H. C., Christensen, P. R., Clements, D. L., Colombi, S., Colombo, L. P. L., Combet, C., Crill, B. P., Curto, A., Cuttaia, F., Danese, L., Davis, R. J., de Bernardis, P., de Zotti, G., Delabrouille, J., Dickinson, C., Diego, J. M., Doré, O., Ducout, A., Dupac, X., Elsner, F., Enßlin, T. A., Eriksen, H. K., Finelli, F., Forni, O., Frailis, M., Fraisse, A. A., Franceschi, E., Galeotta, S., Galli, S., Ganga, K., Ghosh, T., Giard, M., Giraud-Héraud, Y., Gjerløw, E., González-Nuevo, J., Górski, K. M., Gruppuso, A., Gudmundsson, J. E., Harrison, D. L., Hernández-Monteagudo, C., Herranz, D., Hildebrandt, S. R., Hornstrup, A., Hovest, W., Hurier, G., Jaffe, A. H., Jones, W. C., Keihänen, E., Keskitalo, R., Kisner, T. S., Knoche, J., Knox, L., Kunz, M., Kurki-Suonio, H., Lagache, G., Lähteenmäki, A., Lamarre, J. -M., Lasenby, A., Lattanzi, M., Leonardi, R., Levrier, F., Lilje, P. B., Linden-Vørnle, M., López-Caniego, M., Lubin, P. M., Macías-Pérez, J. F., Maffei, B., Maggio, G., Maino, D., Mandolesi, N., Mangilli, A., Maris, M., Martin, P. G., Martínez-González, E., Masi, S., Matarrese, S., Meinhold, P. R., Melchiorri, A., Mennella, A., Migliaccio, M., Mitra, S., Miville-Deschênes, M. -A., Moneti, A., Montier, L., Morgante, G., Mortlock, D., Moss, A., Munshi, D., Murphy, J. A., Naselsky, P., Nati, F., Natoli, P., Netterfield, C. B., Nørgaard-Nielsen, H. U., Novikov, D., Novikov, I., Pagano, L., Pajot, F., Paoletti, D., Pasian, F., Patanchon, G., Perdereau, O., Perotto, L., Pettorino, V., Piacentini, F., Piat, M., Pierpaoli, E., Pointecouteau, E., Polenta, G., Pratt, G. W., Rachen, J. P., Reinecke, M., Remazeilles, M., Renault, C., Renzi, A., Ristorcelli, I., Rocha, G., Rosset, C., Rossetti, M., Roudier, G., Rubiño-Martín, J. A., Rusholme, B., Sandri, M., Santos, D., Savelainen, M., Savini, G., Scott, D., Spencer, L. D., Stolyarov, V., Stompor, R., Sudiwala, R., Sunyaev, R., Sutton, D., Suur-Uski, A. -S., Sygnet, J. -F., Tauber, J. A., Terenzi, L., Toffolatti, L., Tomasi, M., Tristram, M., Tucci, M., Tuovinen, J., Valenziano, L., Valiviita, J., Van Tent, B., Vielva, P., Villa, F., Wade, L. A., Wandelt, B. D., Wehus, I. K., Yvon, D., Zacchei, A., and Zonca, A.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
The secondary cosmic microwave background (CMB) $B$-modes stem from the post-decoupling distortion of the polarization $E$-modes due to the gravitational lensing effect of large-scale structures. These lensing-induced $B$-modes constitute both a valuable probe of the dark matter distribution and an important contaminant for the extraction of the primary CMB $B$-modes from inflation. Planck provides accurate nearly all-sky measurements of both the polarization $E$-modes and the integrated mass distribution via the reconstruction of the CMB lensing potential. By combining these two data products, we have produced an all-sky template map of the lensing-induced $B$-modes using a real-space algorithm that minimizes the impact of sky masks. The cross-correlation of this template with an observed (primordial and secondary) $B$-mode map can be used to measure the lensing $B$-mode power spectrum at multipoles up to $2000$. In particular, when cross-correlating with the $B$-mode contribution directly derived from the Planck polarization maps, we obtain lensing-induced $B$-mode power spectrum measurement at a significance level of $12\,\sigma$, which agrees with the theoretical expectation derived from the Planck best-fit $\Lambda$CDM model. This unique nearly all-sky secondary $B$-mode template, which includes the lensing-induced information from intermediate to small ($10\lesssim \ell\lesssim 1000$) angular scales, is delivered as part of the Planck 2015 public data release. It will be particularly useful for experiments searching for primordial $B$-modes, such as BICEP2/Keck Array or LiteBIRD, since it will enable an estimate to be made of the lensing-induced contribution to the measured total CMB $B$-modes., Comment: 20 pages, 12 figures; Accepted for publication in A&A; The B-mode map is part of the PR2-2015 Cosmology Products; available as Lensing Products in the Planck Legacy Archive http://pla.esac.esa.int/pla/#cosmology; and described in the 'Explanatory Supplement' https://wiki.cosmos.esa.int/planckpla2015/index.php/Specially_processed_maps#2015_Lensing-induced_B-mode_map
- Published
- 2015
- Full Text
- View/download PDF
37. Planck intermediate results
- Author
-
Akrami, Y, Ashdown, M, Aumont, J, Baccigalupi, C, Ballardini, M, Banday, AJ, Barreiro, RB, Bartolo, N, Basak, S, Benabed, K, Bernard, J-P, Bersanelli, M, Bielewicz, P, Bonavera, L, Bond, JR, Borrill, J, Bouchet, FR, Boulanger, F, Bucher, M, Burigana, C, Butler, RC, Calabrese, E, Cardoso, J-F, Carron, J, Chiang, HC, Colombo, LPL, Comis, B, Couchot, F, Coulais, A, Crill, BP, Curto, A, Cuttaia, F, de Bernardis, P, de Rosa, A, de Zotti, G, Delabrouille, J, Di Valentino, E, Dickinson, C, Diego, JM, Doré, O, Ducout, A, Dupac, X, Elsner, F, Enßlin, TA, Eriksen, HK, Falgarone, E, Fantaye, Y, Finelli, F, Frailis, M, Fraisse, AA, Franceschi, E, Frolov, A, Galeotta, S, Galli, S, Ganga, K, Génova-Santos, RT, Gerbino, M, González-Nuevo, J, Górski, KM, Gruppuso, A, Gudmundsson, JE, Hansen, FK, Helou, G, Henrot-Versillé, S, Herranz, D, Hivon, E, Jaffe, AH, Jones, WC, Keihänen, E, Keskitalo, R, Kiiveri, K, Kim, J, Kisner, TS, Krachmalnicoff, N, Kunz, M, Kurki-Suonio, H, Lagache, G, Lamarre, J-M, Lasenby, A, Lattanzi, M, Lawrence, CR, Le Jeune, M, Lellouch, E, Levrier, F, Liguori, M, Lilje, PB, Lindholm, V, López-Caniego, M, Ma, Y-Z, Macías-Pérez, JF, Maggio, G, Maino, D, Mandolesi, N, Maris, M, Martin, PG, Martínez-González, E, Matarrese, S, Mauri, N, McEwen, JD, and Melchiorri, A
- Subjects
Space Sciences ,Physical Sciences ,Astronomical Sciences ,cosmic background radiation ,cosmology: observations ,planets and satellites: general ,astro-ph.EP ,astro-ph.CO ,Astronomical and Space Sciences ,Astronomy & Astrophysics ,Astronomical sciences ,Particle and high energy physics ,Space sciences - Abstract
Measurements of flux density are described for five planets, Mars, Jupiter, Saturn, Uranus, and Neptune, across the six Planck High Frequency Instrument frequency bands (100-857 GHz) and these are then compared with models and existing data. In our analysis, we have also included estimates of the brightness of Jupiter and Saturn at the three frequencies of the Planck Low Frequency Instrument (30, 44, and 70 GHz). The results provide constraints on the intrinsic brightness and the brightness time-variability of these planets. The majority of the planet flux density estimates are limited by systematic errors, but still yield better than 1% measurements in many cases. Applying data from Planck HFI, the Wilkinson Microwave Anisotropy Probe (WMAP), and the Atacama Cosmology Telescope (ACT) to a model that incorporates contributions from Saturn's rings to the planet's total flux density suggests a best fit value for the spectral index of Saturn's ring system of βring = 2.30 ± 0.03 over the 30-1000 GHz frequency range. Estimates of the polarization amplitude of the planets have also been made in the four bands that have polarization-sensitive detectors (100-353 GHz); this analysis provides a 95% confidence level upper limit on Mars's polarization of 1.8, 1.7, 1.2, and 1.7% at 100, 143, 217, and 353 GHz, respectively. The average ratio between the Planck-HFI measurements and the adopted model predictions for all five planets (excluding Jupiter observations for 353 GHz) is 1.004, 1.002, 1.021, and 1.033 for 100, 143, 217, and 353 GHz, respectively. Model predictions for planet thermodynamic temperatures are therefore consistent with the absolute calibration of Planck-HFI detectors at about the three-percent level. We compare our measurements with published results from recent cosmic microwave background experiments. In particular, we observe that the flux densities measured by Planck HFI and WMAP agree to within 2%. These results allow experiments operating in the mm-wavelength range to cross-calibrate against Planck and improve models of radiative transport used in planetary science.
- Published
- 2017
38. Planck intermediate results
- Author
-
Aghanim, N, Akrami, Y, Ashdown, M, Aumont, J, Baccigalupi, C, Ballardini, M, Banday, AJ, Barreiro, RB, Bartolo, N, Basak, S, Benabed, K, Bersanelli, M, Bielewicz, P, Bonaldi, A, Bonavera, L, Bond, JR, Borrill, J, Bouchet, FR, Burigana, C, Calabrese, E, Cardoso, J-F, Challinor, A, Chiang, HC, Colombo, LPL, Combet, C, Crill, BP, Curto, A, Cuttaia, F, de Bernardis, P, de Rosa, A, de Zotti, G, Delabrouille, J, Di Valentino, E, Dickinson, C, Diego, JM, Doré, O, Ducout, A, Dupac, X, Dusini, S, Efstathiou, G, Elsner, F, Enßlin, TA, Eriksen, HK, Fantaye, Y, Finelli, F, Forastieri, F, Frailis, M, Franceschi, E, Frolov, A, Galeotta, S, Galli, S, Ganga, K, Génova-Santos, RT, Gerbino, M, González-Nuevo, J, Górski, KM, Gratton, S, Gruppuso, A, Gudmundsson, JE, Herranz, D, Hivon, E, Huang, Z, Jaffe, AH, Jones, WC, Keihänen, E, Keskitalo, R, Kiiveri, K, Kim, J, Kisner, TS, Knox, L, Krachmalnicoff, N, Kunz, M, Kurki-Suonio, H, Lagache, G, Lamarre, J-M, Lasenby, A, Lattanzi, M, Lawrence, CR, Le Jeune, M, Levrier, F, Lewis, A, Liguori, M, Lilje, PB, Lilley, M, Lindholm, V, López-Caniego, M, Lubin, PM, Ma, Y-Z, Macías-Pérez, JF, Maggio, G, Maino, D, Mandolesi, N, Mangilli, A, Maris, M, Martin, PG, Martínez-González, E, Matarrese, S, Mauri, N, McEwen, JD, and Meinhold, PR
- Subjects
Astronomical Sciences ,Physical Sciences ,cosmology: observations ,cosmic background radiation ,cosmological parameters ,cosmology: theory ,astro-ph.CO ,Astronomical and Space Sciences ,Astronomy & Astrophysics ,Astronomical sciences ,Particle and high energy physics ,Space sciences - Abstract
The six parameters of the standard ΛCDM model have best-fit values derived from the Planck temperature power spectrum that are shifted somewhat from the best-fit values derived from WMAP data. These shifts are driven by features in the Planck temperature power spectrum at angular scales that had never before been measured to cosmic-variance level precision. We have investigated these shifts to determine whether they are within the range of expectation and to understand their origin in the data. Taking our parameter set to be the optical depth of the reionized intergalactic medium, the baryon density ωb, the matter density ωm, the angular size of the sound horizon the spectral index of the primordial power spectrum, ns, and Ase-2τ (where As is the amplitude of the primordial power spectrum), we have examined the change in best-fit values between a WMAP-like large angular-scale data set (with multipole moment < 800 in the Planck temperature power spectrum) and an all angular-scale data set (< 2500Planck temperature power spectrum), each with a prior on τ of 0.07 ± 0.02. We find that the shifts, in units of the 1σ expected dispersion for each parameter, are {value of 8.0. We find that this χ2 value is exceeded in 15% of our simulated data sets, and that a parameter deviates by more than 2.2σ in 9% of simulated data sets, meaning that the shifts are not unusually large. Comparing < 800 instead to > 800, or splitting at a different multipole, yields similar results. We examined the < 800 model residuals in the > 800 power spectrum data and find that the features there that drive these shifts are a set of oscillations across a broad range of angular scales. Although they partly appear similar to the effects of enhanced gravitational lensing, the shifts in ΛCDM parameters that arise in response to these features correspond to model spectrum changes that are predominantly due to non-lensing effects; the only exception is, which, at fixed Ase-2τ, affects the > 800 temperature power spectrum solely through the associated change in As and the impact of that on the lensing potential power spectrum. We also ask, "what is it about the power spectrum at < 800 that leads to somewhat different best-fit parameters than come from the full range?" We find that if we discard the data at < 30, where there is a roughly 2σ downward fluctuation in power relative to the model that best fits the full range, the < 800 best-fit parameters shift significantly towards the < 2500 best-fit parameters. In contrast, including < 30, this previously noted "low-deficit" drives ns up and impacts parameters correlated with ns, such as ωm and H0. As expected, the < 30 data have a much greater impact on the < 800 best fit than on the < 2500 best fit. So although the shifts are not very significant, we find that they can be understood through the combined effects of an oscillatory-like set of high-residuals and the deficit in low-power, excursions consistent with sample variance that happen to map onto changes in cosmological parameters. Finally, we examine agreement between PlanckTT data and two other CMB data sets, namely the Planck lensing reconstruction and the TT power spectrum measured by the South Pole Telescope, again finding a lack of convincing evidence of any significant deviations in parameters, suggesting that current CMB data sets give an internally consistent picture of the ΛCDM model.
- Published
- 2017
39. Planck intermediate results
- Author
-
Adam, R, Aghanim, N, Ashdown, M, Aumont, J, Baccigalupi, C, Ballardini, M, Banday, AJ, Barreiro, RB, Bartolo, N, Basak, S, Battye, R, Benabed, K, Bernard, J-P, Bersanelli, M, Bielewicz, P, Bock, JJ, Bonaldi, A, Bonavera, L, Bond, JR, Borrill, J, Bouchet, FR, Boulanger, F, Bucher, M, Burigana, C, Calabrese, E, Cardoso, J-F, Carron, J, Chiang, HC, Colombo, LPL, Combet, C, Comis, B, Couchot, F, Coulais, A, Crill, BP, Curto, A, Cuttaia, F, Davis, RJ, de Bernardis, P, de Rosa, A, de Zotti, G, Delabrouille, J, Di Valentino, E, Dickinson, C, Diego, JM, Doré, O, Douspis, M, Ducout, A, Dupac, X, Elsner, F, Enßlin, TA, Eriksen, HK, Falgarone, E, Fantaye, Y, Finelli, F, Forastieri, F, Frailis, M, Fraisse, AA, Franceschi, E, Frolov, A, Galeotta, S, Galli, S, Ganga, K, Génova-Santos, RT, Gerbino, M, Ghosh, T, González-Nuevo, J, Górski, KM, Gruppuso, A, Gudmundsson, JE, Hansen, FK, Helou, G, Henrot-Versillé, S, Herranz, D, Hivon, E, Huang, Z, Ilić, S, Jaffe, AH, Jones, WC, Keihänen, E, Keskitalo, R, Kisner, TS, Knox, L, Krachmalnicoff, N, Kunz, M, Kurki-Suonio, H, Lagache, G, Lähteenmäki, A, Lamarre, J-M, Langer, M, Lasenby, A, Lattanzi, M, Lawrence, CR, Le Jeune, M, Levrier, F, Lewis, A, Liguori, M, Lilje, PB, López-Caniego, M, Ma, Y-Z, and Macías-Pérez, JF
- Subjects
Particle and High Energy Physics ,Physical Sciences ,cosmic background radiation ,dark ages ,reionization ,first stars ,polarization ,Astronomy ,Galaxies ,Astronomy and astrophysics ,Cosmology ,astro-ph.CO ,Astronomical and Space Sciences ,Astronomy & Astrophysics ,Astronomical sciences ,Particle and high energy physics ,Space sciences - Abstract
We investigate constraints on cosmic reionization extracted from the Planck cosmic microwave background (CMB) data. We combine the Planck CMB anisotropy data in temperature with the low-multipole polarization data to fit ΛCDM models with various parameterizations of the reionization history. We obtain a Thomson optical depth τ = 0.058 ± 0.012 for the commonly adopted instantaneous reionization model. This confirms, with data solely from CMB anisotropies, the low value suggested by combining Planck 2015 results with other data sets, and also reduces the uncertainties. We reconstruct the history of the ionization fraction using either a symmetric or an asymmetric model for the transition between the neutral and ionized phases. To determine better constraints on the duration of the reionization process, we also make use of measurements of the amplitude of the kinetic Sunyaev-Zeldovich (kSZ) effect using additional information from the high-resolution Atacama Cosmology Telescope and South Pole Telescope experiments. The average redshift at which reionization occurs is found to lie between z = 7.8 and 8.8, depending on the model of reionization adopted. Using kSZ constraints and a redshift-symmetric reionization model, we find an upper limit to the width of the reionization period of Δz < 2.8. In all cases, we find that the Universe is ionized at less than the 10% level at redshifts above z ≅ 10. This suggests that an early onset of reionization is strongly disfavoured by the Planck data. We show that this result also reduces the tension between CMB-based analyses and constraints from other astrophysical sources.
- Published
- 2016
40. Planck intermediate results
- Author
-
Aghanim, N, Ashdown, M, Aumont, J, Baccigalupi, C, Ballardini, M, Banday, AJ, Barreiro, RB, Bartolo, N, Basak, S, Benabed, K, Bernard, J-P, Bersanelli, M, Bielewicz, P, Bonavera, L, Bond, JR, Borrill, J, Bouchet, FR, Burigana, C, Calabrese, E, Cardoso, J-F, Carron, J, Chiang, HC, Colombo, LPL, Comis, B, Contreras, D, Couchot, F, Coulais, A, Crill, BP, Curto, A, Cuttaia, F, de Bernardis, P, de Rosa, A, de Zotti, G, Delabrouille, J, Désert, F-X, Di Valentino, E, Dickinson, C, Diego, JM, Doré, O, Ducout, A, Dupac, X, Dusini, S, Elsner, F, Enßlin, TA, Eriksen, HK, Fantaye, Y, Finelli, F, Forastieri, F, Frailis, M, Franceschi, E, Frolov, A, Galeotta, S, Galli, S, Ganga, K, Génova-Santos, RT, Gerbino, M, Giraud-Héraud, Y, González-Nuevo, J, Górski, KM, Gruppuso, A, Gudmundsson, JE, Hansen, FK, Henrot-Versillé, S, Herranz, D, Hivon, E, Huang, Z, Jaffe, AH, Jones, WC, Keihänen, E, Keskitalo, R, Kiiveri, K, Krachmalnicoff, N, Kunz, M, Kurki-Suonio, H, Lamarre, J-M, Langer, M, Lasenby, A, Lattanzi, M, Lawrence, CR, Le Jeune, M, Leahy, JP, Levrier, F, Liguori, M, Lilje, PB, Lindholm, V, López-Caniego, M, Ma, Y-Z, Macías-Pérez, JF, Maggio, G, Maino, D, Mandolesi, N, Maris, M, Martin, PG, Martínez-González, E, Matarrese, S, Mauri, N, McEwen, JD, Meinhold, PR, Melchiorri, A, and Mennella, A
- Subjects
Particle and High Energy Physics ,Physical Sciences ,cosmology: observations ,cosmic background radiation ,cosmological parameters ,methods: data analysis ,methods: statistical ,astro-ph.CO ,Astronomical and Space Sciences ,Astronomy & Astrophysics ,Astronomical sciences ,Particle and high energy physics ,Space sciences - Abstract
Parity-violating extensions of the standard electromagnetic theory cause in vacuo rotation of the plane of polarization of propagating photons. This effect, also known as cosmic birefringence, has an impact on the cosmic microwave background (CMB) anisotropy angular power spectra, producing non-vanishing T-B and E-B correlations that are otherwise null when parity is a symmetry. Here we present new constraints on an isotropic rotation, parametrized by the angle α, derived from Planck 2015 CMB polarization data. To increase the robustness of our analyses, we employ two complementary approaches, in harmonic space and in map space, the latter based on a peak stacking technique. The two approaches provide estimates for α that are in agreement within statistical uncertainties and are very stable against several consistency tests.Considering the T-B and E-B information jointly, we find α = 0°310°05(stat.)±0°28 (syst.) from the harmonic analysis and α = 0°350°05(stat.)±0°28 (syst.) from the stacking approach. These constraints are compatible with no parity violation and are dominated by the systematic uncertainty in the orientation of Planck's polarization-sensitive bolometers.
- Published
- 2016
41. Planck intermediate results
- Author
-
Ade, PAR, Aghanim, N, Ashdown, M, Aumont, J, Baccigalupi, C, Banday, AJ, Barreiro, RB, Bartolo, N, Basak, S, Battaner, E, Benabed, K, Benoit-Lévy, A, Bernard, J-P, Bersanelli, M, Bielewicz, P, Bock, JJ, Bonaldi, A, Bonavera, L, Bond, JR, Borrill, J, Bouchet, FR, Boulanger, F, Burigana, C, Butler, RC, Calabrese, E, Cardoso, J-F, Catalano, A, Chiang, HC, Christensen, PR, Clements, DL, Colombi, S, Colombo, LPL, Combet, C, Crill, BP, Curto, A, Cuttaia, F, Danese, L, Davis, RJ, de Bernardis, P, de Zotti, G, Delabrouille, J, Dickinson, C, Diego, JM, Doré, O, Ducout, A, Dupac, X, Elsner, F, Enßlin, TA, Eriksen, HK, Finelli, F, Forni, O, Frailis, M, Fraisse, AA, Franceschi, E, Galeotta, S, Galli, S, Ganga, K, Ghosh, T, Giard, M, Giraud-Héraud, Y, Gjerløw, E, González-Nuevo, J, Górski, KM, Gruppuso, A, Gudmundsson, JE, Harrison, DL, Hernández-Monteagudo, C, Herranz, D, Hildebrandt, SR, Hornstrup, A, Hovest, W, Hurier, G, Jaffe, AH, Jones, WC, Keihänen, E, Keskitalo, R, Kisner, TS, Knoche, J, Knox, L, Kunz, M, Kurki-Suonio, H, Lagache, G, Lähteenmäki, A, Lamarre, J-M, Lasenby, A, Lattanzi, M, Leonardi, R, Levrier, F, Lilje, PB, Linden-Vørnle, M, López-Caniego, M, Lubin, PM, Macías-Pérez, JF, Maffei, B, Maggio, G, Maino, D, Mandolesi, N, Mangilli, A, Maris, M, and Martin, PG
- Subjects
Particle and High Energy Physics ,Physical Sciences ,cosmology: observations ,cosmic background radiation ,polarization ,gravitational lensing: weak ,astro-ph.CO ,Astronomical and Space Sciences ,Astronomy & Astrophysics ,Astronomical sciences ,Particle and high energy physics ,Space sciences - Abstract
The secondary cosmic microwave background (CMB) B-modes stem from the post-decoupling distortion of the polarization E-modes due to the gravitational lensing effect of large-scale structures. These lensing-induced B-modes constitute both a valuable probe of the dark matter distribution and an important contaminant for the extraction of the primary CMB B-modes from inflation. Planck provides accurate nearly all-sky measurements of both the polarization E-modes and the integrated mass distribution via the reconstruction of the CMB lensing potential. By combining these two data products, we have produced an all-sky template map of the lensing-induced B-modes using a real-space algorithm that minimizes the impact of sky masks. The cross-correlation of this template with an observed (primordial and secondary) B-mode map can be used to measure the lensing B-mode power spectrum at multipoles up to 2000. In particular, when cross-correlating with the B-mode contribution directly derived from the Planck polarization maps, we obtain lensing-induced B-mode power spectrum measurement at a significance level of 12σ, which agrees with the theoretical expectation derived from the Planck best-fit Λ cold dark matter model. This unique nearly all-sky secondary B-mode template, which includes the lensing-induced information from intermediate to small (10 ≤ l ≤ 1000) angular scales, is delivered as part of the Planck 2015 public data release. It will be particularly useful for experiments searching for primordial B-modes, such as BICEP2/Keck Array or LiteBIRD, since it will enable an estimate to be made of the lensing-induced contribution to the measured total CMB B-modes.
- Published
- 2016
42. Planck intermediate results. XL. The Sunyaev-Zeldovich signal from the Virgo cluster
- Author
-
Planck Collaboration, Ade, P. A. R., Aghanim, N., Arnaud, M., Ashdown, M., Aumont, J., Baccigalupi, C., Banday, A. J., Barreiro, R. B., Bartolo, N., Battaner, E., Benabed, K., Benoit-Lévy, A., Bernard, J. -P., Bersanelli, M., Bielewicz, P., Bonaldi, A., Bonavera, L., Bond, J. R., Borrill, J., Bouchet, F. R., Burigana, C., Butler, R. C., Calabrese, E., Cardoso, J. -F., Catalano, A., Chamballu, A., Chiang, H. C., Christensen, P. R., Churazov, E., Clements, D. L., Colombo, L. P. L., Combet, C., Comis, B., Couchot, F., Coulais, A., Crill, B. P., Curto, A., Cuttaia, F., Danese, L., Davies, R. D., Davis, R. J., de Bernardis, P., de Rosa, A., de Zotti, G., Delabrouille, J., Dickinson, C., Diego, J. M., Dolag, K., Dole, H., Donzelli, S., Doré, O., Douspis, M., Ducout, A., Dupac, X., Efstathiou, G., Elsner, F., Enßlin, T. A., Eriksen, H. K., Finelli, F., Forni, O., Frailis, M., Fraisse, A. A., Franceschi, E., Galeotta, S., Galli, S., Ganga, K., Giard, M., Giraud-Héraud, Y., Gjerløw, E., González-Nuevo, J., Górski, K. M., Gregorio, A., Gruppuso, A., Gudmundsson, J. E., Hansen, F. K., Harrison, D. L., Helou, G., Hernández-Monteagudo, C., Herranz, D., Hildebrandt, S. R., Hivon, E., Hobson, M., Hornstrup, A., Hovest, W., Huffenberger, K. M., Hurier, G., Jaffe, A. H., Jaffe, T. R., Jones, W. C., Keihänen, E., Keskitalo, R., Kisner, T. S., Kneissl, R., Knoche, J., Kunz, M., Kurki-Suonio, H., Lagache, G., Lamarre, J. -M., Lasenby, A., Lattanzi, M., Lawrence, C. R., Leonardi, R., Levrier, F., Liguori, M., Lilje, P. B., Linden-Vørnle, M., López-Caniego, M., Lubin, P. M., Macías-Pérez, J. F., Maffei, B., Maggio, G., Maino, D., Mandolesi, N., Mangilli, A., Marcos-Caballero, A., Maris, M., Martin, P. G., Martínez-González, E., Masi, S., Matarrese, S., Mazzotta, P., Meinhold, P. R., Melchiorri, A., Mennella, A., Migliaccio, M., Mitra, S., Miville-Deschênes, M. -A., Moneti, A., Montier, L., Morgante, G., Mortlock, D., Munshi, D., Murphy, J. A., Naselsky, P., Nati, F., Natoli, P., Noviello, F., Novikov, D., Novikov, I., Oppermann, N., Oxborrow, C. A., Pagano, L., Pajot, F., Paoletti, D., Pasian, F., Pearson, T. J., Perdereau, O., Perotto, L., Pettorino, V., Piacentini, F., Piat, M., Pierpaoli, E., Plaszczynski, S., Pointecouteau, E., Polenta, G., Ponthieu, N., Pratt, G. W., Prunet, S., Puget, J. -L., Rachen, J. P., Reinecke, M., Remazeilles, M., Renault, C., Renzi, A., Ristorcelli, I., Rocha, G., Rosset, C., Rossetti, M., Roudier, G., Rubiño-Martín, J. A., Rusholme, B., Sandri, M., Santos, D., Savelainen, M., Savini, G., Schaefer, B. M., Scott, D., Soler, J. D., Stolyarov, V., Stompor, R., Sudiwala, R., Sunyaev, R., Sutton, D., Suur-Uski, A. -S., Sygnet, J. -F., Tauber, J. A., Terenzi, L., Toffolatti, L., Tomasi, M., Tristram, M., Tucci, M., Umana, G., Valenziano, L., Valiviita, J., Van Tent, B., Vielva, P., Villa, F., Wade, L. A., Wandelt, B. D., Wehus, I. K., Weller, J., Yvon, D., Zacchei, A., and Zonca, A.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
The Virgo cluster is the largest Sunyaev-Zeldovich (SZ) source in the sky, both in terms of angular size and total integrated flux. Planck's wide angular scale and frequency coverage, together with its high sensitivity, allow a detailed study of this large object through the SZ effect. Virgo is well resolved by Planck, showing an elongated structure, which correlates well with the morphology observed from X-rays, but extends beyond the observed X-ray signal. We find a good agreement between the SZ signal (or Compton paranmeter, y_c) observed by Planck and the expected signal inferred from X-ray observations and simple analytical models. Due to its proximity to us, the gas beyond the virial radius can be studied with unprecedented sensitivity by integrating the SZ signal over tens of square degrees. We study the signal in the outskirts of Virgo and compare it with analytical models and a constrained simulation of the environment of Virgo. Planck data suggest that significant amounts of low-density plasma surround Virgo out to twice the virial radius. We find the SZ signal in the outskirts of Virgo to be consistent with a simple model that extrapolates the inferred pressure at lower radii while assuming that the temperature stays in the keV range beyond the virial radius. The observed signal is also consistent with simulations and points to a shallow pressure profile in the outskirts of the cluster. This reservoir of gas at large radii can be linked with the hottest phase of the elusive warm/hot intergalactic medium. Taking the lack of symmetry of Virgo into account, we find that a prolate model is favoured by the combination of SZ and X-ray data, in agreement with predictions., Comment: 21 pages and 20 figures. Submitted to A&A
- Published
- 2015
- Full Text
- View/download PDF
43. Planck 2015 results. XXIII. The thermal Sunyaev-Zeldovich effect--cosmic infrared background correlation
- Author
-
Planck Collaboration, Ade, P. A. R., Aghanim, N., Arnaud, M., Aumont, J., Baccigalupi, C., Banday, A. J., Barreiro, R. B., Bartlett, J. G., Bartolo, N., Battaner, E., Benabed, K., Benoit-Lévy, A., Bernard, J. -P., Bersanelli, M., Bielewicz, P., Bock, J. J., Bonaldi, A., Bonavera, L., Bond, J. R., Borrill, J., Bouchet, F. R., Burigana, C., Butler, R. C., Calabrese, E., Catalano, A., Chamballu, A., Chiang, H. C., Christensen, P. R., Churazov, E., Clements, D. L., Colombo, L. P. L., Combet, C., Comis, B., Couchot, F., Coulais, A., Crill, B. P., Curto, A., Cuttaia, F., Danese, L., Davies, R. D., Davis, R. J., de Bernardis, P., de Rosa, A., de Zotti, G., Delabrouille, J., Dickinson, C., Diego, J. M., Dole, H., Donzelli, S., Doré, O., Douspis, M., Ducout, A., Dupac, X., Efstathiou, G., Elsner, F., Enßlin, T. A., Eriksen, H. K., Finelli, F., Flores-Cacho, I., Forni, O., Frailis, M., Fraisse, A. A., Franceschi, E., Galeotta, S., Galli, S., Ganga, K., Génova-Santos, R. T., Giard, M., Giraud-Héraud, Y., Gjerløw, E., González-Nuevo, J., Górski, K. M., Gregorio, A., Gruppuso, A., Gudmundsson, J. E., Hansen, F. K., Harrison, D. L., Helou, G., Hernández-Monteagudo, C., Herranz, D., Hildebrandt, S. R., Hivon, E., Hobson, M., Hornstrup, A., Hovest, W., Huffenberger, K. M., Hurier, G., Jaffe, A. H., Jaffe, T. R., Jones, W. C., Keihänen, E., Keskitalo, R., Kisner, T. S., Kneissl, R., Knoche, J., Kunz, M., Kurki-Suonio, H., Lagache, G., Lamarre, J. -M., Langer, M., Lasenby, A., Lattanzi, M., Lawrence, C. R., Leonardi, R., Levrier, F., Lilje, P. B., Linden-Vørnle, M., López-Caniego, M., Lubin, P. M., Macías-Pérez, J. F., Maffei, B., Maggio, G., Maino, D., Mak, D. S. Y., Mandolesi, N., Mangilli, A., Maris, M., Martin, P. G., Martínez-González, E., Masi, S., Matarrese, S., Melchiorri, A., Mennella, A., Migliaccio, M., Mitra, S., Miville-Deschênes, M. -A., Moneti, A., Montier, L., Morgante, G., Mortlock, D., Munshi, D., Murphy, J. A., Nati, F., Natoli, P., Noviello, F., Novikov, D., Novikov, I., Oxborrow, C. A., Paci, F., Pagano, L., Pajot, F., Paoletti, D., Partridge, B., Pasian, F., Pearson, T. J., Perdereau, O., Perotto, L., Pettorino, V., Piacentini, F., Piat, M., Pierpaoli, E., Plaszczynski, S., Pointecouteau, E., Polenta, G., Ponthieu, N., Pratt, G. W., Prunet, S., Puget, J. -L., Rachen, J. P., Reinecke, M., Remazeilles, M., Renault, C., Renzi, A., Ristorcelli, I., Rocha, G., Rosset, C., Rossetti, M., Roudier, G., Rubiño-Martín, J. A., Rusholme, B., Sandri, M., Santos, D., Savelainen, M., Savini, G., Scott, D., Spencer, L. D., Stolyarov, V., Stompor, R., Sunyaev, R., Sutton, D., Suur-Uski, A. -S., Sygnet, J. -F., Tauber, J. A., Terenzi, L., Toffolatti, L., Tomasi, M., Tristram, M., Tucci, M., Umana, G., Valenziano, L., Valiviita, J., Van Tent, B., Vielva, P., Villa, F., Wade, L. A., Wandelt, B. D., Wehus, I. K., Welikala, N., Yvon, D., Zacchei, A., and Zonca, A.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We use Planck data to detect the cross-correlation between the thermal Sunyaev-Zeldovich (tSZ) effect and the infrared emission from the galaxies that make up the the cosmic infrared background (CIB). We first perform a stacking analysis towards Planck-confirmed galaxy clusters. We detect infrared emission produced by dusty galaxies inside these clusters and demonstrate that the infrared emission is about 50% more extended than the tSZ effect. Modelling the emission with a Navarro--Frenk--White profile, we find that the radial profile concentration parameter is $c_{500} = 1.00^{+0.18}_{-0.15}$. This indicates that infrared galaxies in the outskirts of clusters have higher infrared flux than cluster-core galaxies. We also study the cross-correlation between tSZ and CIB anisotropies, following three alternative approaches based on power spectrum analyses: (i) using a catalogue of confirmed clusters detected in Planck data; (ii) using an all-sky tSZ map built from Planck frequency maps; and (iii) using cross-spectra between Planck frequency maps. With the three different methods, we detect the tSZ-CIB cross-power spectrum at significance levels of (i) 6 $\sigma$, (ii) 3 $\sigma$, and (iii) 4 $\sigma$. We model the tSZ-CIB cross-correlation signature and compare predictions with the measurements. The amplitude of the cross-correlation relative to the fiducial model is $A_{\rm tSZ-CIB}= 1.2\pm0.3$. This result is consistent with predictions for the tSZ-CIB cross-correlation assuming the best-fit cosmological model from Planck 2015 results along with the tSZ and CIB scaling relations., Comment: 18 pages, 16 figures
- Published
- 2015
- Full Text
- View/download PDF
44. Planck 2015 results. XII. Full Focal Plane simulations
- Author
-
Planck Collaboration, Ade, P. A. R., Aghanim, N., Arnaud, M., Ashdown, M., Aumont, J., Baccigalupi, C., Banday, A. J., Barreiro, R. B., Bartlett, J. G., Bartolo, N., Battaner, E., Benabed, K., Benoît, A., Benoit-Lévy, A., Bernard, J. -P., Bersanelli, M., Bielewicz, P., Bock, J. J., Bonaldi, A., Bonavera, L., Bond, J. R., Borrill, J., Bouchet, F. R., Boulanger, F., Bucher, M., Burigana, C., Butler, R. C., Calabrese, E., Cardoso, J. -F., Castex, G., Catalano, A., Challinor, A., Chamballu, A., Chiang, H. C., Christensen, P. R., Clements, D. L., Colombi, S., Colombo, L. P. L., Combet, C., Couchot, F., Coulais, A., Crill, B. P., Curto, A., Cuttaia, F., Danese, L., Davies, R. D., Davis, R. J., de Bernardis, P., de Rosa, A., de Zotti, G., Delabrouille, J., Delouis, J. -M., Désert, F. -X., Dickinson, C., Diego, J. M., Dolag, K., Dole, H., Donzelli, S., Doré, O., Douspis, M., Ducout, A., Dupac, X., Efstathiou, G., Elsner, F., Enßlin, T. A., Eriksen, H. K., Fergusson, J., Finelli, F., Forni, O., Frailis, M., Fraisse, A. A., Franceschi, E., Frejsel, A., Galeotta, S., Galli, S., Ganga, K., Ghosh, T., Giard, M., Giraud-Héraud, Y., Gjerløw, E., González-Nuevo, J., Górski, K. M., Gratton, S., Gregorio, A., Gruppuso, A., Gudmundsson, J. E., Hansen, F. K., Hanson, D., Harrison, D. L., Henrot-Versillé, S., Hernández-Monteagudo, C., Herranz, D., Hildebrandt, S. R., Hivon, E., Hobson, M., Holmes, W. A., Hornstrup, A., Hovest, W., Huffenberger, K. M., Hurier, G., Jaffe, A. H., Jaffe, T. R., Jones, W. C., Juvela, M., Karakci, A., Keihänen, E., Keskitalo, R., Kiiveri, K., Kisner, T. S., Kneissl, R., Knoche, J., Kunz, M., Kurki-Suonio, H., Lagache, G., Lamarre, J. -M., Lasenby, A., Lattanzi, M., Lawrence, C. R., Leonardi, R., Lesgourgues, J., Levrier, F., Liguori, M., Lilje, P. B., Linden-Vørnle, M., Lindholm, V., López-Caniego, M., Lubin, P. M., Macías-Pérez, J. F., Maggio, G., Maino, D., Mandolesi, N., Mangilli, A., Maris, M., Martin, P. G., Martínez-González, E., Masi, S., Matarrese, S., McGehee, P., Meinhold, P. R., Melchiorri, A., Melin, J. -B., Mendes, L., Mennella, A., Migliaccio, M., Mitra, S., Miville-Deschênes, M. -A., Moneti, A., Montier, L., Morgante, G., Mortlock, D., Moss, A., Munshi, D., Murphy, J. A., Naselsky, P., Nati, F., Natoli, P., Netterfield, C. B., Nørgaard-Nielsen, H. U., Noviello, F., Novikov, D., Novikov, I., Oxborrow, C. A., Paci, F., Pagano, L., Pajot, F., Paoletti, D., Pasian, F., Patanchon, G., Pearson, T. J., Perdereau, O., Perotto, L., Perrotta, F., Pettorino, V., Piacentini, F., Piat, M., Pierpaoli, E., Pietrobon, D., Plaszczynski, S., Pointecouteau, E., Polenta, G., Pratt, G. W., Prézeau, G., Prunet, S., Puget, J. -L., Rachen, J. P., Rebolo, R., Reinecke, M., Remazeilles, M., Renault, C., Renzi, A., Ristorcelli, I., Rocha, G., Roman, M., Rosset, C., Rossetti, M., Roudier, G., Rubiño-Martín, J. A., Rusholme, B., Sandri, M., Santos, D., Savelainen, M., Scott, D., Seiffert, M. D., Shellard, E. P. S., Spencer, L. D., Stolyarov, V., Stompor, R., Sudiwala, R., Sutton, D., Suur-Uski, A. -S., Sygnet, J. -F., Tauber, J. A., Terenzi, L., Toffolatti, L., Tomasi, M., Tristram, M., Tucci, M., Tuovinen, J., Valenziano, L., Valiviita, J., Van Tent, B., Vielva, P., Villa, F., Wade, L. A., Wandelt, B. D., Wehus, I. K., Welikala, N., Yvon, D., Zacchei, A., and Zonca, A.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present the 8th Full Focal Plane simulation set (FFP8), deployed in support of the Planck 2015 results. FFP8 consists of 10 fiducial mission realizations reduced to 18144 maps, together with the most massive suite of Monte Carlo realizations of instrument noise and CMB ever generated, comprising $10^4$ mission realizations reduced to about $10^6$ maps. The resulting maps incorporate the dominant instrumental, scanning, and data analysis effects; remaining subdominant effects will be included in future updates. Generated at a cost of some 25 million CPU-hours spread across multiple high-performance-computing (HPC) platforms, FFP8 is used for the validation and verification of analysis algorithms, as well as their implementations, and for removing biases from and quantifying uncertainties in the results of analyses of the real data.
- Published
- 2015
- Full Text
- View/download PDF
45. Planck intermediate results. XXXIX. The Planck list of high-redshift source candidates
- Author
-
Planck Collaboration, Ade, P. A. R., Aghanim, N., Arnaud, M., Aumont, J., Baccigalupi, C., Banday, A. J., Barreiro, R. B., Bartolo, N., Battaner, E., Benabed, K., Benoit-Lévy, A., Bernard, J. -P., Bersanelli, M., Bielewicz, P., Bonaldi, A., Bonavera, L., Bond, J. R., Borrill, J., Bouchet, F. R., Boulanger, F., Burigana, C., Butler, R. C., Calabrese, E., Catalano, A., Chiang, H. C., Christensen, P. R., Clements, D. L., Colombo, L. P. L., Couchot, F., Coulais, A., Crill, B. P., Curto, A., Cuttaia, F., Danese, L., Davies, R. D., Davis, R. J., de Bernardis, P., de Rosa, A., de Zotti, G., Delabrouille, J., Dickinson, C., Diego, J. M., Dole, H., Doré, O., Douspis, M., Ducout, A., Dupac, X., Elsner, F., Enßlin, T. A., Eriksen, H. K., Falgarone, E., Finelli, F., Flores-Cacho, I., Frailis, M., Fraisse, A. A., Franceschi, E., Galeotta, S., Galli, S., Ganga, K., Giard, M., Giraud-Héraud, Y., Gjerløw, E., González-Nuevo, J., Górski, K. M., Gregorio, A., Gruppuso, A., Gudmundsson, J. E., Hansen, F. K., Harrison, D. L., Helou, G., Hernández-Monteagudo, C., Herranz, D., Hildebrandt, S. R., Hivon, E., Hobson, M., Hornstrup, A., Hovest, W., Huffenberger, K. M., Hurier, G., Jaffe, A. H., Jaffe, T. R., Keihänen, E., Keskitalo, R., Kisner, T. S., Knoche, J., Kunz, M., Kurki-Suonio, H., Lagache, G., Lamarre, J. -M., Lasenby, A., Lattanzi, M., Lawrence, C. R., Leonardi, R., Levrier, F., Lilje, P. B., Linden-Vørnle, M., López-Caniego, M., Lubin, P. M., Macías-Pérez, J. F., Maffei, B., Maggio, G., Maino, D., Mandolesi, N., Mangilli, A., Maris, M., Martin, P. G., Martínez-González, E., Masi, S., Matarrese, S., Melchiorri, A., Mennella, A., Migliaccio, M., Mitra, S., Miville-Deschênes, M. -A., Moneti, A., Montier, L., Morgante, G., Mortlock, D., Munshi, D., Murphy, J. A., Nati, F., Natoli, P., Nesvadba, N. P. H., Noviello, F., Novikov, D., Novikov, I., Oxborrow, C. A., Pagano, L., Pajot, F., Paoletti, D., Partridge, B., Pasian, F., Pearson, T. J., Perdereau, O., Perotto, L., Pettorino, V., Piacentini, F., Piat, M., Plaszczynski, S., Pointecouteau, E., Polenta, G., Pratt, G. W., Prunet, S., Puget, J. -L., Rachen, J. P., Reinecke, M., Remazeilles, M., Renault, C., Renzi, A., Ristorcelli, I., Rocha, G., Rosset, C., Rossetti, M., Roudier, G., Rubiño-Martín, J. A., Rusholme, B., Sandri, M., Santos, D., Savelainen, M., Savini, G., Scott, D., Spencer, L. D., Stolyarov, V., Stompor, R., Sudiwala, R., Sunyaev, R., Suur-Uski, A. -S., Sygnet, J. -F., Tauber, J. A., Terenzi, L., Toffolatti, L., Tomasi, M., Tristram, M., Tucci, M., Türler, M., Umana, G., Valenziano, L., Valiviita, J., Van Tent, B., Vielva, P., Villa, F., Wade, L. A., Wandelt, B. D., Wehus, I. K., Welikala, N., Yvon, D., Zacchei, A., and Zonca, A.
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
The Planck mission, thanks to its large frequency range and all-sky coverage, has a unique potential for systematically detecting the brightest, and rarest, submillimetre sources on the sky, including distant objects in the high-redshift Universe traced by their dust emission. A novel method, based on a component-separation procedure using a combination of Planck and IRAS data, has been applied to select the most luminous cold submm sources with spectral energy distributions peaking between 353 and 857GHz at 5' resolution. A total of 2151 Planck high-z source candidates (the PHZ) have been detected in the cleanest 26% of the sky, with flux density at 545GHz above 500mJy. Embedded in the cosmic infrared background close to the confusion limit, these high-z candidates exhibit colder colours than their surroundings, consistent with redshifts z>2, assuming a dust temperature of 35K and a spectral index of 1.5. First follow-up observations obtained from optical to submm have confirmed that this list consists of two distinct populations. A small fraction (around 3%) of the sources have been identified as strongly gravitationally lensed star-forming galaxies, which are amongst the brightest submm lensed objects (with flux density at 545GHz ranging from 350mJy up to 1Jy) at redshift 2 to 4. However, the vast majority of the PHZ sources appear as overdensities of dusty star-forming galaxies, having colours consistent with z>2, and may be considered as proto-cluster candidates. The PHZ provides an original sample, complementary to the Planck Sunyaev-Zeldovich Catalogue; by extending the population of the virialized massive galaxy clusters to a population of sources at z>1.5, the PHZ may contain the progenitors of today's clusters. Hence the PHZ opens a new window on the study of the early ages of structure formation, and the understanding of the intensively star-forming phase at high-z.
- Published
- 2015
- Full Text
- View/download PDF
46. Planck 2013 results. XXXI. Consistency of the Planck data
- Author
-
Planck Collaboration, Ade, P. A. R., Arnaud, M., Aumont, J., Baccigalupi, C., Banday, A. J., Barreiro, R. B., Battaner, E., Benabed, K., Benoit-Levy, A., Bernard, J. -P., Bersanelli, M., Bielewicz, P., Bond, J. R., Borrill, J., Bouchet, F. R., Burigana, C., Cardoso, J. -F., Catalano, A., Challinor, A., Chamballu, A., Chiang, H. C., Christensen, R., Clements, D. L., Colombi, S., Colombo, L. P. L., Couchot, F., Coulais, A., Crill, B. P., Curto, A., Cuttaia, F., Danese, L., Davies, R. D., Davis, R. J., de Bernardis, P., de Rosa, A., de Zotti, G., Delabrouille, J., Desert, F. -X., Dickinson, C., Diego, J. M., Dole, H., Donzelli, S., Dore, O., Douspis, M., Dupac, X., Ensslin, T. A., Eriksen, H. K., Finelli, F., Forni, O., Frailis, M., Fraisse, A. A., Franceschi, E., Galeotta, S., Ganga, K., Giard, M., Gonzalez-Nuevo, J., Gorski, K. M., Gratton, S., Gregorio, A., Gruppuso, A., Gudmundsson, J. E., Hansen, F. K., Hanson, D., Harrison, D. L., Henrot-Versille, S., Herranz, C. D., Hildebrandt, S. R., Hivon, E., Hobson, M., Holmes, W. A., Hornstrup, A., Hovest, W., Huffenberger, K. M., Jaffe, A. H., Jaffe, T. R., Jones, W. C., Keihanen, E., Keskitalo, R., Knoche, J., Kunz, M., Kurki-Suonio, H., Lagache, G., Lahteenmaki, A., Lamarre, J. -M., Lasenby, A., Lattanzi, M., Lawrence, C. R., Leonardi, R., Leon-Tavares, J., Lesgourgues, J., Liguori, M., Lilje, P. B., Lilley, M., Linden-Vornle, M., Lopez-Caniego, M., Lubin, P. M., Macias-Perez, J. F., Maino, D., Mandolesi, N., Maris, M., Martin, P. G., Martinez-Gonzalez, E., Masi, S., Matarrese, S., Mazzotta, P., Meinhold, P. R., Melchiorri, A., Mendes, L., Mennella, A., Mitra, S., Miville-Deschenes, M. -A., Moneti, A., Montier, L., Morgante, G., Mortlock, D., Moss, A., Munshi, D., Murphy, J. A., Naselsky, P., Nati, F., Natoli, P., Norgaard-Nielsen, H. U., Noviello, F., Novikov, D., Novikov, I., Oxborrow, C. A., Pagano, L., Pajot, F., Paoletti, D., Partridge, B., Pasian, F., Patanchon, G., Pearson, D., Pearson, T. J., Perdereau, O., Perrotta, F., Piacentini, F., Piat, M., Pierpaoli, E., Pietrobon, D., Plaszczynski, S., Pointecouteau, E., Polenta, G., Popa, L., Pratt, G. W., Prunet, S., Puget, J. -L., Rachen, J. P., Reinecke, M., Remazeilles, M., Renault, C., Ricciardi, S., Ristorcelli, I., Rocha, G., Roudier, G., Rubino-Martin, J. A., Rusholme, B., Sandri, M., Scott, D., Stolyarov, V., Sudiwala, R., Sutton, D., Suur-Uski, A. -S., Sygnet, J. -F., Tauber, J. A., Terenzi, L., Toffolatti, L., Tomasi, M., Tristram, M., Tucci, M., Valenziano, L., Valiviita, J., Van Tent, B., Vielva, P., Villa, F., Wade, L. A., Wandelt, B. D., Wehus, I. K., White, S. D. M., Yvon, D., Zacchei, A., and Zonca, A.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
The Planck design and scanning strategy provide many levels of redundancy that can be exploited to provide tests of internal consistency. One of the most important is the comparison of the 70GHz and 100GHz channels. Based on different instrument technologies, with feeds located differently in the focal plane, analysed independently by different teams using different software, and near the minimum of diffuse foreground emission, these channels are in effect two different experiments. The 143GHz channel has the lowest noise level on Planck, and is near the minimum of unresolved foreground emission. In this paper, we analyse the level of consistency achieved in the 2013 Planck data. We concentrate on comparisons between the 70/100/143GHz channel maps and power spectra, particularly over the angular scales of the first and second acoustic peaks, on maps masked for diffuse Galactic emission and for strong unresolved sources. Difference maps covering angular scales from 8deg-15arcmin are consistent with noise, and show no evidence of cosmic microwave background structure. Including small but important corrections for unresolved-source residuals, we demonstrate agreement between 70 and 100GHz power spectra averaged over 70
- Published
- 2015
- Full Text
- View/download PDF
47. Planck 2015 results. III. LFI systematic uncertainties
- Author
-
Planck Collaboration, Ade, P. A. R., Aumont, J., Baccigalupi, C., Banday, A. J., Barreiro, R. B., Bartolo, N., Basak, S., Battaglia, P., Battaner, E., Benabed, K., Benoit-Lévy, A., Bernard, J. -P., Bersanelli, M., Bielewicz, P., Bonaldi, A., Bonavera, L., Bond, J. R., Borrill, J., Burigana, C., Butler, R. C., Calabrese, E., Catalano, A., Christensen, P. R., Colombo, L. P. L., Cruz, M., Curto, A., Cuttaia, F., Danese, L., Davies, R. D., Davis, R. J., de Bernardis, P., de Rosa, A., de Zotti, G., Delabrouille, J., Dickinson, C., Diego, J. M., Doré, O., Ducout, A., Dupac, X., Elsner, F., Enßlin, T. A., Eriksen, H. K., Finelli, F., Frailis, M., Franceschet, C., Franceschi, E., Galeotta, S., Galli, S., Ganga, K., Ghosh, T., Giard, M., Giraud-Héraud, Y., Gjerløw, E., González-Nuevo, J., Górski, K. M., Gregorio, A., Gruppuso, A., Hansen, F. K., Harrison, D. L., Hernández-Monteagudo, C., Herranz, D., Hildebrandt, S. R., Hivon, E., Hobson, M., Hornstrup, A., Hovest, W., Huffenberger, K. M., Hurier, G., Jaffe, A. H., Jaffe, T. R., Keihäen, E., Keskitalo, R., Kiiveri, K., Kisner, T. S., Knoche, J., Krachmalnicoff, N., Kunz, M., Kurki-Suonio, H., Lagache, G., Lamarre, J. -M., Lattanzi, M., Lawrence, C. R., Leahy, J. P., Leonardi, R., Levrier, F., Lilje, P. B., Linden-Vørnle, M., Lindholm, V., López-Caniego, M., Lubin, P. M., Macías-Pérez, J. F., Maffei, B., Maggio, G., Maino, D., Mandolesi, N., Mangilli, A., Maris, M., Martin, P. G., Martínez-González, E., Masi, S., Matarrese, S., Meinhold, P. R., Mennella, A., Migliaccio, M., Mitra, S., Montier, L., Morgante, G., Mortlock, D., Munshi, D., Murphy, J. A., Nati, F., Natoli, P., Noviello, F., Paci, F., Pagano, L., Pajot, F., Paoletti, D., Partridge, B., Pasian, F., Pearson, T. J., Perdereau, O., Pettorino, V., Piacentini, F., Pointecouteau, E., Polenta, G., Pratt, G. W., Puget, J. -L., Rachen, J. P., Reinecke, M., Remazeilles, M., Renzi, A., Ristorcelli, I., Rocha, G., Rosset, C., Rossetti, M., Roudier, G., Rubiño-Martín, J. A., Rusholme, B., Sandri, M., Santos, D., Savelainen, M., Scott, D., Stolyarov, V., Stompor, R., Suur-Uski, A. -S., Sygnet, J. -F., Tauber, J. A., Tavagnacco, D., Terenzi, L., Toffolatti, L., Tomasi, M., Tristram, M., Tucci, M., Umana, G., Valenziano, L., Valiviita, J., Van Tent, B., Vassallo, T., Vielva, P., Villa, F., Wade, L. A., Wandelt, B. D., Watson, R., Wehus, I. K., Yvon, D., Zacchei, A., Zibin, J. P., and Zonca, A.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present the current accounting of systematic effect uncertainties for the Low Frequency Instrument (LFI) that are relevant to the 2015 release of the Planck cosmological results, showing the robustness and consistency of our data set, especially for polarization analysis. We use two complementary approaches: (i) simulations based on measured data and physical models of the known systematic effects; and (ii) analysis of difference maps containing the same sky signal ("null-maps"). The LFI temperature data are limited by instrumental noise. At large angular scales the systematic effects are below the cosmic microwave background (CMB) temperature power spectrum by several orders of magnitude. In polarization the systematic uncertainties are dominated by calibration uncertainties and compete with the CMB $E$-modes in the multipole range 10--20. Based on our model of all known systematic effects, we show that these effects introduce a slight bias of around $0.2\,\sigma$ on the reionization optical depth derived from the 70\,GHz $EE$ spectrum using the 30 and 353\,GHz channels as foreground templates. At 30\,GHz the systematic effects are smaller than the Galactic foreground at all scales in temperature and polarization, which allows us to consider this channel as a reliable template of synchrotron emission. We assess the residual uncertainties due to LFI effects on CMB maps and power spectra after component separation and show that these effects are smaller than the CMB amplitude at all scales. We also assess the impact on non-Gaussianity studies and find it to be negligible. Some residuals still appear in null maps from particular sky survey pairs, particularly at 30 GHz, suggesting possible straylight contamination due to an imperfect knowledge of the beam far sidelobes., Comment: Accepted for publication in A&A
- Published
- 2015
- Full Text
- View/download PDF
48. Planck 2015 results. XI. CMB power spectra, likelihoods, and robustness of parameters
- Author
-
Planck Collaboration, Aghanim, N., Arnaud, M., Ashdown, M., Aumont, J., Baccigalupi, C., Banday, A. J., Barreiro, R. B., Bartlett, J. G., Bartolo, N., Battaner, E., Benabed, K., Benoît, A., Benoit-Lévy, A., Bernard, J. -P., Bersanelli, M., Bielewicz, P., Bock, J. J., Bonaldi, A., Bonavera, L., Bond, J. R., Borrill, J., Bouchet, F. R., Boulanger, F., Bucher, M., Burigana, C., Butler, R. C., Calabrese, E., Cardoso, J. -F., Catalano, A., Challinor, A., Chiang, H. C., Christensen, P. R., Clements, D. L., Colombo, L. P. L., Combet, C., Coulais, A., Crill, B. P., Curto, A., Cuttaia, F., Danese, L., Davies, R. D., Davis, R. J., de Bernardis, P., de Rosa, A., de Zotti, G., Delabrouille, J., Désert, F. -X., Di Valentino, E., Dickinson, C., Diego, J. M., Dolag, K., Dole, H., Donzelli, S., Doré, O., Douspis, M., Ducout, A., Dunkley, J., Dupac, X., Efstathiou, G., Elsner, F., Enßlin, T. A., Eriksen, H. K., Fergusson, J., Finelli, F., Forni, O., Frailis, M., Fraisse, A. A., Franceschi, E., Frejsel, A., Galeotta, S., Galli, S., Ganga, K., Gauthier, C., Gerbino, M., Giard, M., Gjerløw, E., González-Nuevo, J., Górski, K. M., Gratton, S., Gregorio, A., Gruppuso, A., Gudmundsson, J. E., Hamann, J., Hansen, F. K., Harrison, D. L., Helou, G., Henrot-Versillé, S., Hernández-Monteagudo, C., Herranz, D., Hildebrandt, S. R., Hivon, E., Holmes, W. A., Hornstrup, A., Huffenberger, K. M., Hurier, G., Jaffe, A. H., Jones, W. C., Juvela, M., Keihänen, E., Keskitalo, R., Kiiveri, K., Knoche, J., Knox, L., Kunz, M., Kurki-Suonio, H., Lagache, G., Lähteenmäki, A., Lamarre, J. -M., Lasenby, A., Lattanzi, M., Lawrence, C. R., Jeune, M. Le, Leonardi, R., Lesgourgues, J., Levrier, F., Lewis, A., Liguori, M., Lilje, P. B., Lilley, M., Linden-Vørnle, M., Lindholm, V., López-Caniego, M., Macías-Pérez, J. F., Maffei, B., Maggio, G., Maino, D., Mandolesi, N., Mangilli, A., Maris, M., Martin, P. G., Martínez-González, E., Masi, S., Matarrese, S., Meinhold, P. R., Melchiorri, A., Migliaccio, M., Millea, M., Mitra, S., Miville-Deschênes, M. -A., Moneti, A., Montier, L., Morgante, G., Mortlock, D., Mottet, S., Munshi, D., Murphy, J. A., Narimani, A., Naselsky, P., Nati, F., Natoli, P., Noviello, F., Novikov, D., Novikov, I., Oxborrow, C. A., Paci, F., Pagano, L., Pajot, F., Paoletti, D., Partridge, B., Pasian, F., Patanchon, G., Pearson, T. J., Perdereau, O., Perotto, L., Pettorino, V., Piacentini, F., Piat, M., Pierpaoli, E., Pietrobon, D., Plaszczynski, S., Pointecouteau, E., Polenta, G., Ponthieu, N., Pratt, G. W., Prunet, S., Puget, J. -L., Rachen, J. P., Reinecke, M., Remazeilles, M., Renault, C., Renzi, A., Ristorcelli, I., Rocha, G., Rossetti, M., Roudier, G., d'Orfeuil, B. Rouillé, Rubiño-Martín, J. A., Rusholme, B., Salvati, L., Sandri, M., Santos, D., Savelainen, M., Savini, G., Scott, D., Serra, P., Spencer, L. D., Spinelli, M., Stolyarov, V., Stompor, R., Sunyaev, R., Sutton, D., Suur-Uski, A. -S., Sygnet, J. -F., Tauber, J. A., Terenzi, L., Toffolatti, L., Tomasi, M., Tristram, M., Trombetti, T., Tucci, M., Tuovinen, J., Umana, G., Valenziano, L., Valiviita, J., Van Tent, F., Vielva, P., Villa, F., Wade, L. A., Wandelt, B. D., Wehus, I. K., Yvon, D., Zacchei, A., and Zonca, A.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
This paper presents the Planck 2015 likelihoods, statistical descriptions of the 2-point correlations of CMB data, using the hybrid approach employed previously: pixel-based at $\ell<30$ and a Gaussian approximation to the distribution of spectra at higher $\ell$. The main improvements are the use of more and better processed data and of Planck polarization data, and more detailed foreground and instrumental models, allowing further checks and enhanced immunity to systematics. Progress in foreground modelling enables a larger sky fraction. Improvements in processing and instrumental models further reduce uncertainties. For temperature, we perform an analysis of end-to-end instrumental simulations fed into the data processing pipeline; this does not reveal biases from residual instrumental systematics. The $\Lambda$CDM cosmological model continues to offer a very good fit to Planck data. The slope of primordial scalar fluctuations, $n_s$, is confirmed smaller than unity at more than 5{\sigma} from Planck alone. We further validate robustness against specific extensions to the baseline cosmology. E.g., the effective number of neutrino species remains compatible with the canonical value of 3.046. This first detailed analysis of Planck polarization concentrates on E modes. At low $\ell$ we use temperature at all frequencies and a subset of polarization. The frequency range improves CMB-foreground separation. Within the baseline model this requires a reionization optical depth $\tau=0.078\pm0.019$, significantly lower than without high-frequency data for explicit dust monitoring. At high $\ell$ we detect residual errors in E, typically O($\mu$K$^2$); we recommend temperature alone as the high-$\ell$ baseline. Nevertheless, Planck high-$\ell$ polarization allows a separate determination of $\Lambda$CDM parameters consistent with those from temperature alone., Comment: This paper is associated with the 2015 Planck release (see http://www.cosmos.esa.int/web/planck/publications). Likelihood code & data available at http://www.cosmos.esa.int/web/planck/pla. Version accepted by A&A. Substancially extended (104 pages) with analysis of end-to-simulations of systematics further confirming the results. Abstract abridged
- Published
- 2015
- Full Text
- View/download PDF
49. Planck 2015 results. XXVI. The Second Planck Catalogue of Compact Sources
- Author
-
Planck Collaboration, Ade, P. A. R., Aghanim, N., Argüeso, F., Arnaud, M., Ashdown, M., Aumont, J., Baccigalupi, C., Banday, A. J., Barreiro, R. B., Bartolo, N., Battaner, E., Beichman, C., Benabed, K., Benoît, A., Benoit-Lévy, A., Bernard, J. -P., Bersanelli, M., Bielewicz, P., Bock, J. J., Böhringer, H., Bonaldi, A., Bonavera, L., Bond, J. R., Borrill, J., Bouchet, F. R., Boulanger, F., Bucher, M., Burigana, C., Butler, R. C., Calabrese, E., Cardoso, J. -F., Carvalho, P., Catalano, A., Challinor, A., Chamballu, A., Chary, R. -R., Chiang, H. C., Christensen, P. R., Clemens, M., Clements, D. L., Colombi, S., Colombo, L. P. L., Combet, C., Couchot, F., Coulais, A., Crill, B. P., Curto, A., Cuttaia, F., Danese, L., Davies, R. D., Davis, R. J., de Bernardis, P., de Rosa, A., de Zotti, G., Delabrouille, J., Désert, F. -X., Dickinson, C., Diego, J. M., Dole, H., Donzelli, S., Doré, O., Douspis, M., Ducout, A., Dupac, X., Efstathiou, G., Elsner, F., Enßlin, T. A., Eriksen, H. K., Falgarone, E., Fergusson, J., Finelli, F., Forni, O., Frailis, M., Fraisse, A. A., Franceschi, E., Frejsel, A., Galeotta, S., Galli, S., Ganga, K., Giard, M., Giraud-Héraud, Y., Gjerløw, E., González-Nuevo, J., Górski, K. M., Gratton, S., Gregorio, A., Gruppuso, A., Gudmundsson, J. E., Hansen, F. K., Hanson, D., Harrison, D. L., Helou, G., Henrot-Versillé, S., Hernández-Monteagudo, C., Herranz, D., Hildebrandt, S. R., Hivon, E., Hobson, M., Holmes, W. A., Hornstrup, A., Hovest, W., Huffenberger, K. M., Hurier, G., Jaffe, A. H., Jaffe, T. R., Jones, W. C., Juvela, M., Keihänen, E., Keskitalo, R., Kisner, T. S., Kneissl, R., Knoche, J., Kunz, M., Kurki-Suonio, H., Lagache, G., Lähteenmäki, A., Lamarre, J. -M., Lasenby, A., Lattanzi, M., Lawrence, C. R., Leahy, J. P., Leonardi, R., León-Tavares, J., Lesgourgues, J., Levrier, F., Liguori, M., Lilje, P. B., Linden-Vørnle, M., López-Caniego, M., Lubin, P. M., Macías-Pérez, J. F., Maggio, G., Maino, D., Mandolesi, N., Mangilli, A., Maris, M., Marshall, D. J., Martin, P. G., Martínez-González, E., Masi, S., Matarrese, S., McGehee, P., Meinhold, P. R., Melchiorri, A., Mendes, L., Mennella, A., Migliaccio, M., Mitra, S., Miville-Deschênes, M. -A., Moneti, A., Montier, L., Morgante, G., Mortlock, D., Moss, A., Munshi, D., Murphy, J. A., Naselsky, P., Nati, F., Natoli, P., Negrello, M., Netterfield, C. B., Nørgaard-Nielsen, H. U., Noviello, F., Novikov, D., Novikov, I., Oxborrow, C. A., Paci, F., Pagano, L., Pajot, F., Paladini, R., Paoletti, D., Partridge, B., Pasian, F., Patanchon, G., Pearson, T. J., Perdereau, O., Perotto, L., Perrotta, F., Pettorino, V., Piacentini, F., Piat, M., Pierpaoli, E., Pietrobon, D., Plaszczynski, S., Pointecouteau, E., Polenta, G., Pratt, G. W., Prézeau, G., Prunet, S., Puget, J. -L., Rachen, J. P., Reach, W. T., Rebolo, R., Reinecke, M., Remazeilles, M., Renault, C., Renzi, A., Ristorcelli, I., Rocha, G., Rosset, C., Rossetti, M., Roudier, G., Rowan-Robinson, M., Rubiño-Martín, J. A., Rusholme, B., Sandri, M., Sanghera, H. S., Santos, D., Savelainen, M., Savini, G., Scott, D., Seiffert, M. D., Shellard, E. P. S., Spencer, L. D., Stolyarov, V., Sudiwala, R., Sunyaev, R., Sutton, D., Suur-Uski, A. -S., Sygnet, J. -F., Tauber, J. A., Terenzi, L., Toffolatti, L., Tomasi, M., Tornikoski, M., Tristram, M., Tucci, M., Tuovinen, J., Türler, M., Umana, G., Valenziano, L., Valiviita, J., Van Tent, B., Vielva, P., Villa, F., Wade, L. A., Walter, B., Wandelt, B. D., Wehus, I. K., Yvon, D., Zacchei, A., and Zonca, A.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
The Second Planck Catalogue of Compact Sources is a catalogue of sources detected in single-frequency maps from the full duration of the Planck mission and supersedes previous versions of the Planck compact source catalogues. It consists of compact sources, both Galactic and extragalactic, detected over the entire sky. Compact sources detected in the lower frequency channels are assigned to the PCCS2, while at higher frequencies they are assigned to one of two sub-catalogues, the PCCS2 or PCCS2E, depending on their location on the sky. The first of these catalogues covers most of the sky and allows the user to produce subsamples at higher reliabilities than the target 80% integral reliability of the catalogue. The PCCS2E contains sources detected in sky regions where the diffuse emission makes it difficult to quantify the reliability of the detections. Both the PCCS2 and PCCS2E include polarization measurements, in the form of polarized flux densities, or upper limits, and orientation angles for all seven polarization-sensitive Planck channels. The improved data-processing of the full-mission maps and their reduced noise levels allow us to increase the number of objects in the catalogue, improving its completeness for the target 80 % reliability as compared with the previous versions, the PCCS and ERCSC catalogues., Comment: 39 pages and 33 figures. This paper is one of a set associated with the 2015 data release from Planck. Version accepted by Astronomy and Astrophysics
- Published
- 2015
- Full Text
- View/download PDF
50. Planck 2015 results. XVI. Isotropy and statistics of the CMB
- Author
-
Planck Collaboration, Ade, P. A. R., Aghanim, N., Akrami, Y., Aluri, P. K., Arnaud, M., Ashdown, M., Aumont, J., Baccigalupi, C., Banday, A. J., Barreiro, R. B., Bartolo, N., Basak, S., Battaner, E., Benabed, K., Benoît, A., Benoit-Lévy, A., Bernard, J. -P., Bersanelli, M., Bielewicz, P., Bock, J. J., Bonaldi, A., Bonavera, L., Bond, J. R., Borrill, J., Bouchet, F. R., Boulanger, F., Bucher, M., Burigana, C., Butler, R. C., Calabrese, E., Cardoso, J. -F., Casaponsa, B., Catalano, A., Challinor, A., Chamballu, A., Chiang, H. C., Christensen, P. R., Church, S., Clements, D. L., Colombi, S., Colombo, L. P. L., Combet, C., Contreras, D., Couchot, F., Coulais, A., Crill, B. P., Cruz, M., Curto, A., Cuttaia, F., Danese, L., Davies, R. D., Davis, R. J., de Bernardis, P., de Rosa, A., de Zotti, G., Delabrouille, J., Désert, F. -X., Diego, J. M., Dole, H., Donzelli, S., Doré, O., Douspis, M., Ducout, A., Dupac, X., Efstathiou, G., Elsner, F., Enßlin, T. A., Eriksen, H. K., Fantaye, Y., Fergusson, J., Fernandez-Cobos, R., Finelli, F., Forni, O., Frailis, M., Fraisse, A. A., Franceschi, E., Frejsel, A., Frolov, A., Galeotta, S., Galli, S., Ganga, K., Gauthier, C., Ghosh, T., Giard, M., Giraud-Héraud, Y., Gjerløw, E., González-Nuevo, J., Górski, K. M., Gratton, S., Gregorio, A., Gruppuso, A., Gudmundsson, J. E., Hansen, F. K., Hanson, D., Harrison, D. L., Henrot-Versillé, S., Hernández-Monteagudo, C., Herranz, D., Hildebrandt, S. R., Hivon, E., Hobson, M., Holmes, W. A., Hornstrup, A., Hovest, W., Huang, Z., Huffenberger, K. M., Hurier, G., Jaffe, A. H., Jaffe, T. R., Jones, W. C., Juvela, M., Keihänen, E., Keskitalo, R., Kim, J., Kisner, T. S., Knoche, J., Kunz, M., Kurki-Suonio, H., Lagache, G., Lähteenmäki, A., Lamarre, J. -M., Lasenby, A., Lattanzi, M., Lawrence, C. R., Leonardi, R., Lesgourgues, J., Levrier, F., Liguori, M., Lilje, P. B., Linden-Vørnle, M., Liu, H., López-Caniego, M., Lubin, P. M., Macías-Pérez, J. F., Maggio, G., Maino, D., Mandolesi, N., Mangilli, A., Marinucci, D., Maris, M., Martin, P. G., Martínez-González, E., Masi, S., Matarrese, S., McGehee, P., Meinhold, P. R., Melchiorri, A., Mendes, L., Mennella, A., Migliaccio, M., Mikkelsen, K., Mitra, S., Miville-Deschênes, M. -A., Molinari, D., Moneti, A., Montier, L., Morgante, G., Mortlock, D., Moss, A., Munshi, D., Murphy, J. A., Naselsky, P., Nati, F., Natoli, P., Netterfield, C. B., Nørgaard-Nielsen, H. U., Noviello, F., Novikov, D., Novikov, I., Oxborrow, C. A., Paci, F., Pagano, L., Pajot, F., Pant, N., Paoletti, D., Pasian, F., Patanchon, G., Pearson, T. J., Perdereau, O., Perotto, L., Perrotta, F., Pettorino, V., Piacentini, F., Piat, M., Pierpaoli, E., Pietrobon, D., Plaszczynski, S., Pointecouteau, E., Polenta, G., Popa, L., Pratt, G. W., Prézeau, G., Prunet, S., Puget, J. -L., Rachen, J. P., Rebolo, R., Reinecke, M., Remazeilles, M., Renault, C., Renzi, A., Ristorcelli, I., Rocha, G., Rosset, C., Rossetti, M., Rotti, A., Roudier, G., Rubiño-Martín, J. A., Rusholme, B., Sandri, M., Santos, D., Savelainen, M., Savini, G., Scott, D., Seiffert, M. D., Shellard, E. P. S., Souradeep, T., Spencer, L. D., Stolyarov, V., Stompor, R., Sudiwala, R., Sunyaev, R., Sutton, D., Suur-Uski, A. -S., Sygnet, J. -F., Tauber, J. A., Terenzi, L., Toffolatti, L., Tomasi, M., Tristram, M., Trombetti, T., Tucci, M., Tuovinen, J., Valenziano, L., Valiviita, J., Van Tent, B., Vielva, P., Villa, F., Wade, L. A., Wandelt, B. D., Wehus, I. K., Yvon, D., Zacchei, A., Zibin, J. P., and Zonca, A.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We test the statistical isotropy and Gaussianity of the cosmic microwave background (CMB) anisotropies using observations made by the Planck satellite. Our results are based mainly on the full Planck mission for temperature, but also include some polarization measurements. In particular, we consider the CMB anisotropy maps derived from the multi-frequency Planck data by several component-separation methods. For the temperature anisotropies, we find excellent agreement between results based on these sky maps over both a very large fraction of the sky and a broad range of angular scales, establishing that potential foreground residuals do not affect our studies. Tests of skewness, kurtosis, multi-normality, N-point functions, and Minkowski functionals indicate consistency with Gaussianity, while a power deficit at large angular scales is manifested in several ways, for example low map variance. The results of a peak statistics analysis are consistent with the expectations of a Gaussian random field. The "Cold Spot" is detected with several methods, including map kurtosis, peak statistics, and mean temperature profile. We thoroughly probe the large-scale dipolar power asymmetry, detecting it with several independent tests, and address the subject of a posteriori correction. Tests of directionality suggest the presence of angular clustering from large to small scales, but at a significance that is dependent on the details of the approach. We perform the first examination of polarization data, finding the morphology of stacked peaks to be consistent with the expectations of statistically isotropic simulations. Where they overlap, these results are consistent with the Planck 2013 analysis based on the nominal mission data and provide our most thorough view of the statistics of the CMB fluctuations to date., Comment: Paper XVI of the Planck 2015 release. This is the version accepted by A&A. An additional section discussing the sensitivity of various anomalies to sky coverage has been included
- Published
- 2015
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.