1. Polyarginine Cell-Penetrating Peptides Bind and Inhibit SERCA2.
- Author
-
Lunde PK, Manfra O, Støle TP, Lunde M, Martinsen M, Carlson CR, and Louch WE
- Subjects
- Muscle, Skeletal metabolism, Protein Isoforms metabolism, Sarcoplasmic Reticulum Calcium-Transporting ATPases metabolism, Cell-Penetrating Peptides pharmacology, Cell-Penetrating Peptides metabolism
- Abstract
Cell-penetrating peptides (CPPs) are short peptide sequences that have the ability to cross the cell membrane and deliver cargo. Although it is critical that CPPs accomplish this task with minimal off-target effects, such actions have in many cases not been robustly screened. We presently investigated whether the commonly used CPPs TAT and the polyarginines Arg
9 and Arg11 exert off-target effects on cellular Ca2+ homeostasis. In experiments employing myocytes and homogenates from the cardiac left ventricle or soleus muscle, we observed marked inhibition of Ca2+ recycling into the sarcoplasmic reticulum (SR) following incubation with polyarginine CPPs. In both tissues, the rate of SR Ca2+ leak remained unchanged, indicating that protracted Ca2+ removal from the cytosol stemmed from inhibition of the SR Ca2+ ATPase 2 (SERCA2). No such inhibition occurred following treatment with TAT, or in preparations from the SERCA1-expressing extensor digitorum longus muscle. Experiments in HEK cells overexpressing individual SERCA isoforms confirmed that polyarginine incubation specifically inhibited the activity of SERCA2a and 2b, but not SERCA1 or 3. The attenuation of SERCA2 activity was not dependent on the presence of phospholamban, and ELISA-based analyses rather revealed direct interaction between the polyarginines and the actuator domain of the protein. Surface plasmon resonance experiments confirmed strong binding within this region of SERCA2, and slow dissociation between the two species. Based on these observations, we urge caution when employing polyarginine CPPs. Indeed, as SERCA2 is expressed in diverse cell types, the wide-ranging consequences of SERCA2 binding and inhibition should be anticipated in both experimental and therapeutic settings.- Published
- 2023
- Full Text
- View/download PDF