17 results on '"Magana JR"'
Search Results
2. Controlling the Formation of Polyelectrolyte Complex Nanoparticles Using Programmable pH Reactions.
- Author
-
Sproncken CCM, Gumí-Audenis B, Foroutanparsa S, Magana JR, and Voets IK
- Abstract
Enabling complexation of weak polyelectrolytes, in the presence of a programmable pH-modulation, offers a means to achieve temporal control over polyelectrolyte coassembly. Here, by mixing oppositely charged poly(allylamine hydrochloride) and poly(sodium methacrylate) in a (bi)sulfite buffer, nanoscopic complex coacervates are formed. Addition of formaldehyde initiates the formaldehyde-sulfite clock reaction, affecting the polyelectrolyte assembly in two ways. First, the abrupt pH increase from the reaction changes the charge density of the polyelectrolytes and thus the ratio of cationic and anionic species. Simultaneously, reactions between the polyamine and formaldehyde lead to chemical modifications on the polymer. Interestingly, core-shell polymeric nanoparticles are produced, which remain colloidally stable for months. Contrastingly, in the same system, in the absence of the clock reaction, aggregation and phase separation occur within minutes to days after mixing. Introducing an acid-producing reaction enables further temporal control over the coassembly, generating transient nanoparticles with nanoscopic dimensions and an adjustable lifetime of tens of minutes., Competing Interests: The authors declare no competing financial interest., (© 2022 The Authors. Published by American Chemical Society.)
- Published
- 2022
- Full Text
- View/download PDF
3. Switchable Electrostatically Templated Polymerization.
- Author
-
Li C, Magana JR, Sobotta F, Wang J, Stuart MAC, van Ravensteijn BGP, and Voets IK
- Abstract
We report a switchable, templated polymerization system where the strength of the templating effect can be modulated by solution pH and/or ionic strength. The responsiveness to these cues is incorporated through a dendritic polyamidoamine-based template of which the charge density depends on pH. The dendrimers act as a template for the polymerization of an oppositely charged monomer, namely sodium styrene sulfonate. We show that the rate of polymerization and maximum achievable monomer conversion are directly related to the charge density of the template, and hence the environmental pH. The polymerization could effectively be switched "ON" and "OFF" on demand, by cycling between acidic and alkaline reaction environments. These findings break ground for a novel concept, namely harnessing co-assembly of a template and growing polymer chains with tunable association strength to create and control coupled polymerization and self-assembly pathways of (charged) macromolecular building blocks., (© 2022 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.)
- Published
- 2022
- Full Text
- View/download PDF
4. Complex supramolecular fiber formed by coordination-induced self-assembly of benzene-1,3,5-tricarboxamide (BTA).
- Author
-
Wu B, Liu L, Zhou L, Magana JR, Hendrix MMRM, Wang J, Li C, Ding P, Wang Y, Guo X, Voets IK, Cohen Stuart MA, and Wang J
- Subjects
- Scattering, Small Angle, X-Ray Diffraction, Benzamides, Benzene
- Abstract
Hypothesis: In the quest for large but well-controlled supramolecular structures, the discotic benzene-1,3,5-tricarboxamide (BTA) has received quite some attention, because it can form hydrogen-bonded stacks that can be regarded as supramolecular polymers of which the single BTA molecule is the monomer. In this report, we consider a more complex BTA-based supramolecular polymer, namely one that is built up from supramolecular 'monomers'., Experiments: We design a tris-ligand L
3 consisting of a BTA core carrying three dipicolinic acid (DPA) groups. L3 itself is too small to form polymers, but in the presence of appropriate metal ions, each L3 can form three coordination bonds and so form (L3 )n clusters that are large enough to stack successfully: at an appropriate metal dose, long and stable filaments with a cross-sectional diameter of 12 nm appear. We monitor the growth process by UV-vis spectroscopy and light scattering, and use small angle X-ray scattering (SAXS), TEM as well as molecular simulation to confirm the filamentous structure of the fibers and determine their dimensions., Findings: The formation and structure of the fiber are very similar for various transition metal ions, which enables introducing different functionalities, e.g., magnetic relaxivity, by proper choice of the metal ions. Hence, we obtain a doubly supramolecular polymer, connected axially by hydrogen bonds, and radially by coordination bonds. Not only does this realize a higher level of complexity, but it also allows to easily introduce and vary metal-derived functionalities., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2021 Elsevier Inc. All rights reserved.)- Published
- 2022
- Full Text
- View/download PDF
5. Chromonic nematic liquid crystals in a room-temperature ionic liquid.
- Author
-
Magana JR, Pérez-Calm A, and Rodriguez-Abreu C
- Abstract
Planar multiaromatic molecules hierarchically and selectively arrange into nematic chromonic liquid crystals in the room temperature ionic liquid 2-hydroxyethylammonium formate. In a proof of concept, these liquid crystals were used as reaction media to produce mesostructured silica materials under mild biomimetic conditions. Several other applications are envisaged.
- Published
- 2022
- Full Text
- View/download PDF
6. Fractal-like R5 assembly promote the condensation of silicic acid into silica particles.
- Author
-
Gascoigne L, Magana JR, Atkins DL, Sproncken CCM, Gumi-Audenis B, Schoenmakers SMC, Wakeham D, Wanless EJ, and Voets IK
- Abstract
Hypothesis: Despite advances in understanding the R5 (SSKKSGSYSGKSGSKRRIL) peptide-driven bio-silica process, there remains significant discrepancies regarding the physicochemical characterization and the self-assembling mechanistic driving forces of the supramolecular R5 template. This paper investigates the self-assembly of R5 as a function of monovalent (sodium chloride) and multivalent salt (phosphate) to determine if assembly is phosphate ion concentration dependent. Additionally, we hypothesize that the assembled R5 aggregates do not resemble a micelle or unimer structure as proposed in current literature., Experiments: R5 peptides were synthesized, and aggregates evaluated for their size, morphology, and association state as a function of salt and ionic strength concentration via dynamic and static light scattering, small angle X-ray and neutron scattering and cryogenic transmission electron microscopy. Furthermore, we compare the proposed R5 template to precipitated silica by scanning electron microscopy., Findings: R5 peptides assemble into large aggregates due to multivalence bridging and the decrease in electrostatic repulsion due to ionic strength. We elucidate the structure of R5 aggregates as mass-fractals composed of small spherical aggregates. Moreover, we discover that phosphate ions not only have a significant role in driving the growth of the R5 scaffold, but additionally in driving the polycondensation of silicic acid during the bio-silification process via electrostatic interactions., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF
7. Co-assembly of precision polyurethane ionomers reveals role of and interplay between individual components.
- Author
-
Timmers EM, Fransen PM, González García Á, Schoenmakers SMC, Magana JR, Peeters JW, Tennebroek R, van Casteren I, Tuinier R, Janssen HM, and Voets IK
- Abstract
Industrial and household products, such as paints, inks and cosmetics usually consist of mixtures of macromolecules that are disperse in composition, in size and in monomer sequence. Identifying structure-function relationships for these systems is complicated, as particular macromolecular components cannot be investigated individually. For this study, we have addressed this issue, and have synthesized a series of five sequence-defined polyurethanes (PUs): one neutral-hydrophobic, one single-charged hydrophilic, one single-charged hydrophobic and two double-charged amphiphilic PUs (one symmetric and one asymmetric). These novel precision PUs - that were prepared by using stepwise coupling-deprotection synthetic protocols - have a defined composition, size and monomer sequence, where the chosen sequences were inspired by those that are abundantly formed in the production of industrial waterborne PU dispersions. By performing dynamic light scattering experiments (DLS), self-consistent field (SCF) computations and cryogenic transmission electron microscopy (cryo-TEM), we have elucidated the behavior in aqueous solution of the individual precision PUs, as well as of binary and ternary mixtures of the PU sequences. The double-charged PU sequences ('hosts') were sufficiently amphiphilic to yield single-component micellar solutions, whereas the two more hydrophobic sequences did not micellize on their own, and gave precipitates or ill-defined larger aggregates. Both the neutral-hydrophobic PU and the hydrophilic single-charged PU were successfully incorporated in the host micelles as guests, respectively increasing and reducing the micelle radius upon incorporation. SCF computations indicated that double-charged symmetric PUs stretch whilst double-charged asymmetric PUs are expelled from the core to accommodate hydrophobic PU guests within the micelles. For the ternary mixture of the double-charged symmetric and asymmetric hosts and the neutral-hydrophobic guest we have found an improved colloidal stability, as compared to those for binary mixtures of either host and hydrophobic guest. In another ternary mixture of precision PUs, with all three components not capable of forming micelles on their own, we see that the ensemble of molecules produces stable micellar solutions. Taken together, we find that the interplay between PU-molecules in aqueous dispersions promotes the formation of stable micellar hydrocolloids., Competing Interests: There are no conflicts to declare., (This journal is © The Royal Society of Chemistry.)
- Published
- 2021
- Full Text
- View/download PDF
8. Micellization of Sequence-Controlled Polyurethane Ionomers in Mixed Aqueous Solvents.
- Author
-
Timmers EM, Fransen PM, Magana JR, Janssen HM, and Voets IK
- Abstract
While the impact of compositional parameters such as block length and ionic content on the micellization of (polymeric) amphiphiles is widely investigated, the influence of monomer sequence has received far less attention until recently. Here, we report the synthesis of two sequence-controlled polyurethane ionomers (PUIs) prepared via a stepwise coupling-deprotection strategy, and compare their solution association in aqueous-organic mixtures. The two PUIs are highly similar in mass and overall composition, yet differ markedly in the sequence of building blocks. PUI-A2 comprises a polytetrahydrofuran (pTHF) block connected to an alternation of isophorone diamine (IPDA) and dimethylolpropionic acid (DMPA) units that together are also arranged in a blockwise manner. The result is a macromolecular structure with a comparatively hydrophobic tail (pTHF) and a hydrophilic headgroup, which structure is reminiscent of those of traditional surfactants, albeit much larger in size. PUI-S2 instead resembles a bolaamphiphilic architecture with a pTHF midblock connected on either end to a singly charged segment comprising DMPA and IPDA. We detect micellization below a threshold cosolvent volume fraction (φ
solv ) of 0.4 in aqueous-organic mixtures with tetrahydrofuran (THF), ethanol, and isopropyl alcohol. We use scattering tools to compare the aggregation number ( Nagg ) and hydrodynamic radius ( Rh ) of PUI-S2 and PUI-A2 micelles. Irrespective of the solvent composition, we observe in the micellar window of φsolv < 0.4, lower Nagg for PUI-S2 micelles compared to PUI-A2 , which we attribute to packing restraints associated with its bolaamphiphilic architecture. The increase in micellar size with increasing φsolv is much more pronounced for PUI-S2 than for PUI-A2 . The micellar mass decreases with increasing φsolv for both PUIs; the effect is modest for PUI-S2 compared to PUI-A2 and is not observed in the most apolar cosolvent studied (THF). Upon the approach of the micellization boundary φsolv ≈ 0.4, both types of PUI micelles become less compact in structure, as (in most cases) PUIs are released and as micellar dimensions increase., Competing Interests: The authors declare no competing financial interest., (© 2021 American Chemical Society.)- Published
- 2021
- Full Text
- View/download PDF
9. Single Enzyme Nanoparticles with Improved Biocatalytic Activity through Protein Entrapment in a Surfactant Shell.
- Author
-
Atkins DL, Magana JR, Sproncken CCM, van Hest JCM, and Voets IK
- Subjects
- Circular Dichroism, Polymers, Static Electricity, Nanoparticles, Surface-Active Agents
- Abstract
A polymeric corona consisting of an alkyl-glycolic acid ethoxylate (C
X EOY ) surfactant offers a promising approach toward endowing proteins with thermotropic phase behavior and hyperthermal activity. Typically, preparation of protein-surfactant biohybrids is performed via chemical modification of acidic residues followed by electrostatic conjugation of an anionic surfactant to encapsulate single proteins. While this procedure has been applied to a broad range of proteins, modification of acidic residues may be detrimental to function for specific enzymes. Herein, we report on the one-pot preparation of biohybrids via covalent conjugation of surfactants to accessible lysine residues. We entrap the model enzyme hen egg-white lysozyme (HEWL) in a shell of carboxyl-functionalized C12 EO10 or C12 EO22 surfactants. With fewer surfactants, our covalent biohybrids display similar thermotropic phase behavior to their electrostatically conjugated analogues. Through a combination of small-angle X-ray scattering and circular dichroism spectroscopy, we find that both classes of biohybrids consist of a folded single-protein core decorated by surfactants. Whilst traditional biohybrids retain densely packed surfactant coronas, our biohybrids display a less dense and heterogeneously distributed surfactant coverage located opposite to the catalytic cleft of HEWL. In solution, this surfactant coating permits 7- or 3.5-fold improvements in activity retention for biohybrids containing C12 EO10 or C12 EO22 , respectively. The reported alternative pathway for biohybrid preparation offers a new horizon to expand upon the library of proteins for which functional biohybrid materials can be prepared. We also expect that an improved understanding of the distribution of tethered surfactants in the corona will be crucial for future structure-function investigations.- Published
- 2021
- Full Text
- View/download PDF
10. 100th Anniversary of Macromolecular Science Viewpoint: Attractive Soft Matter: Association Kinetics, Dynamics, and Pathway Complexity in Electrostatically Coassembled Micelles.
- Author
-
Sproncken CCM, Magana JR, and Voets IK
- Abstract
Electrostatically coassembled micelles constitute a versatile class of functional soft materials with broad application potential as, for example, encapsulation agents for nanomedicine and nanoreactors for gels and inorganic particles. The nanostructures that form upon the mixing of selected oppositely charged (block co)polymers and other ionic species greatly depend on the chemical structure and physicochemical properties of the micellar building blocks, such as charge density, block length (ratio), and hydrophobicity. Nearly three decades of research since the introduction of this new class of polymer micelles shed significant light on the structure and properties of the steady-state association colloids. Dynamics and out-of-equilibrium processes, such as (dis)assembly pathways, exchange kinetics of the micellar constituents, and reaction-assembly networks, have steadily gained more attention. We foresee that the broadened scope will contribute toward the design and preparation of otherwise unattainable structures with emergent functionalities and properties. This Viewpoint focuses on current efforts to study such dynamic and out-of-equilibrium processes with greater spatiotemporal detail. We highlight different approaches and discuss how they reveal and rationalize similarities and differences in the behavior of mixed micelles prepared under various conditions and from different polymeric building blocks., Competing Interests: The authors declare no competing financial interest., (© 2021 The Authors. Published by American Chemical Society.)
- Published
- 2021
- Full Text
- View/download PDF
11. Sequence of Polyurethane Ionomers Determinative for Core Structure of Surfactant-Copolymer Complexes.
- Author
-
Timmers EM, Magana JR, Schoenmakers SMC, Fransen PM, Janssen HM, and Voets IK
- Subjects
- Hydrophobic and Hydrophilic Interactions, Macromolecular Substances, Micelles, Drug Carriers chemistry, Polyelectrolytes chemistry, Polymers chemistry, Polyurethanes chemistry, Surface-Active Agents chemistry
- Abstract
The core of micelles self-assembled from amphiphiles is hydrophobic and contains little water, whereas complex coacervate core micelles co-assembled from oppositely charged hydrophilic polymers have a hydrophilic core with a high water content. Co-assembly of ionic surfactants with ionic-neutral copolymers yields surfactant-copolymer complexes known to be capable of solubilizing both hydrophilic and hydrophobic cargo within the mixed core composed of a coacervate phase with polyelectrolyte-decorated surfactant micelles. Here we formed such complexes from asymmetric ( PUI-A2 ) and symmetric ( PUI-S2 ), sequence-controlled polyurethane ionomers and poly( N -methyl-2-vinylpyridinium iodide)
29 - b -poly(ethylene oxide)204 copolymers. The complexes with PUI-S2 were 1.3-fold larger in mass and 1.8-fold larger in radius of gyration than the PUI-A2 complexes. Small-angle X-ray scattering revealed differences in the packing of the similarly sized PUI micelles within the core of the complexes. The PUI-A2 micelles were arranged in a more ordered fashion and were spaced further apart from each other (10 nm vs. 6 nm) than the PUI-S2 micelles. Hence, this work shows that the monomer sequence of amphiphiles can be varied to alter the internal structure of surfactant-copolymer complexes. Since the structure of the micellar core may affect both the cargo loading and release, our findings suggest that these properties may be tuned through control of the monomer sequence of the micellar constituents.- Published
- 2020
- Full Text
- View/download PDF
12. Bioinspired Scaffolding by Supramolecular Amines Allows the Formation of One- and Two-Dimensional Silica Superstructures.
- Author
-
Magana JR, Gumí-Audenis B, Tas RP, Gascoigne L, Atkins DL, and Voets IK
- Subjects
- Microscopy, Electron, Transmission, Scattering, Small Angle, X-Ray Diffraction, Amines chemistry, Silicon Dioxide chemistry
- Abstract
Silica materials attract an increasing amount of interest in (fundamental) research, and find applications in, for example, sensing, catalysis, and drug delivery. As the properties of these (nano)materials not only depend on their chemistry but also their size, shape, and surface area, the controllable synthesis of silica is essential for tailoring the materials to specific applications. Advantageously, bioinspired routes for silica production are environmentally friendly and straightforward since the formation process is spontaneous and proceeds under mild conditions. These strategies mostly employ amine-bearing phosphorylated (bio)polymers. In this work, we expand this principle to supramolecular polymers based on the water-soluble cationic cyanine dye Pinacyanol acetate. Upon assembly in water, these dye molecules form large, polyaminated, supramolecular fibers. The surfaces of these fibers can be used as a scaffold for the condensation of silicic acid. Control over the ionic strength, dye concentration, and silicic acid saturation yielded silica fibers with a diameter of 25 nm and a single, 4 nm pore. Unexpectedly, other unusual superstructures, namely, nummulites and spherulites, are also observed depending on the ionic strength and dye concentration. Transmission and scanning electron microscopy (TEM and SEM) showed that these superstructures are formed by aligned silica fibers. Close examination of the dye scaffold prior silicification using small-angle X-ray scattering (SAXS), and UV/Vis spectroscopy revealed minor influence of the ionic strength and dye concentration on the morphology of the supramolecular scaffold. Total internal reflection fluorescence (TIRF) during silicification unraveled that if the reaction is kept under static conditions, only silica fibers are obtained. Experiments performed on the dye scaffold and silica superstructures evidenced that the marked structural diversity originates from the arrangement of silica/dye fibers. Under these mild conditions, external force fields can profoundly influence the morphology of the produced silica., (© 2020 The Authors. Published by Wiley-VCH GmbH.)
- Published
- 2020
- Full Text
- View/download PDF
13. On Complex Coacervate Core Micelles: Structure-Function Perspectives.
- Author
-
Magana JR, Sproncken CCM, and Voets IK
- Abstract
The co-assembly of ionic-neutral block copolymers with oppositely charged species produces nanometric colloidal complexes, known, among other names, as complex coacervates core micelles (C3Ms). C3Ms are of widespread interest in nanomedicine for controlled delivery and release, whilst research activity into other application areas, such as gelation, catalysis, nanoparticle synthesis, and sensing, is increasing. In this review, we discuss recent studies on the functional roles that C3Ms can fulfil in these and other fields, focusing on emerging structure-function relations and remaining knowledge gaps.
- Published
- 2020
- Full Text
- View/download PDF
14. Architecture-Dependent Interplay between Self-Assembly and Crystallization in Discrete Block Co-Oligomers.
- Author
-
Petkau-Milroy K, Ianiro A, Ahn MML, Magana JR, Vleugels MEJ, Lamers BAG, Tuinier R, Voets IK, Palmans ARA, and Meijer EW
- Abstract
Access to versatile and stable nanostructures formed by the self-assembly of block copolymers in water is essential for biomedical applications. These applications require control over the stability, morphology, and size of the formed nanostructures. Here, we study the self-assembly in water of a library of fully discrete and sequence-controlled AB-type block co-oligomers (BCOs) of oligo(l-lactic acid)- b -oligo(ethylene glycol). In this series, we eliminate all the inherent uncertainty associated with molar mass, ratio, and compositional dispersity, but vary the ratio between the water-soluble and water-insoluble parts. The BCO library is designed in such a way that vesicles, spherical micelles, and cylindrical micelles are generated in solution, hereby covering a variety of common morphologies. With the help of self-consistent field (SCF) computations, the thermodynamic structures in water are predicted for all structures. The morphologies formed were experimentally analyzed using a combination of calorimetry and scattering techniques. When comparing the experimentally found structures with those predicted, we find an excellent agreement. Intriguingly, calorimetry showed the presence of crystallized l-lactic acid (LLA) units in the bilayer of the lamellar forming BCO. Despite this crystallinity, there is no mismatch between the predicted and observed bilayer thicknesses upon self-assembly in water. In this case, phase separation driven by the hydrophobic LLA block coincides with crystallization, resulting in stable morphologies. Thus, SCF guided library design and sample preparation can lead toward robust formulations of nanoparticles.
- Published
- 2020
- Full Text
- View/download PDF
15. Formulating stable hexosome dispersions with a technical grade diglycerol-based surfactant.
- Author
-
Magana JR, Homs M, Esquena J, Freilich I, Kesselman E, Danino D, Rodríguez-Abreu C, and Solans C
- Abstract
We report on the phase behavior of a technical grade and commercially available diglycerol monoisostearate, C41V, and its use for the preparation of nanostructured liquid crystal dispersions (hexosomes). C41V in water forms a reverse hexagonal liquid crystal at room temperature and in a wide range of concentrations (0.5-95 wt%); this hexagonal liquid crystal is stable up to 70 °C. A simple and effective method has been developed to disperse hexosomes with an encapsulated active molecule (Ketoprofen) that consists of (1) producing a nano-emulsion stabilized by an amphiphilic block copolymer (Pluronic F127) and containing ethyl acetate and C41V by using ultrasounds and (2) evaporating the solvent to produce hexosomes. The size of the hexosomes and ultrasound dispersion time is markedly reduced by using ethyl acetate as an auxiliary solvent with an optimal initial ratio of C41V:ethyl acetate of 50:50. Dynamic light scattering shows that the size of the hexosomes decreases as the concentration of stabilizer F127 or encapsulated Ketoprofen is increased. The lattice parameter in the hexagonal structure is calculated from small angle scattering data to be ca. 5.3 nm and is only slightly dependent on the amount of F127 and/or encapsulated Ketoprofen. Cryo electron microscopy reveals that the samples contain hexosomes and these coexist with spherical, likely F127 micelles. Lastly, hexosomes show a pH responsive release of Ketoprofen which could be useful for target delivery in the gastrointestinal tract., (Copyright © 2019 Elsevier Inc. All rights reserved.)
- Published
- 2019
- Full Text
- View/download PDF
16. From Chromonic Self-Assembly to Hollow Carbon Nanofibers: Efficient Materials in Supercapacitor and Vapor-Sensing Applications.
- Author
-
Magana JR, Kolen'ko YV, Deepak FL, Solans C, Shrestha RG, Hill JP, Ariga K, Shrestha LK, and Rodriguez-Abreu C
- Abstract
Carbon nanofibers (CNFs) with high surface area (820 m
2 /g) have been successfully prepared by a nanocasting approach using silica nanofibers obtained from chromonic liquid crystals as a template. CNFs with randomly oriented graphitic layers show outstanding electrochemical supercapacitance performance, exhibiting a specific capacitance of 327 F/g at a scan rate of 5 mV/s with a long life-cycling capability. Approximately 95% capacitance retention is observed after 1000 charge-discharge cycles. Furthermore, about 80% of capacitance is retained at higher scan rates (up to 500 mV/s) and current densities (from 1 to 10 A/g). The high capacitance of CNFs comes from their porous structure, high pore volume, and electrolyte-accessible high surface area. CNFs with ordered graphitic layers were also obtained upon heat treatment at high temperatures (>1500 °C). Although it is expected that these graphitic CNFs have increased electrical conductivity, in the present case, they exhibited lower capacitance values due to a loss in surface area during thermal treatment. High-surface-area CNFs can be used in sensing applications; in particular, they showed selective differential adsorption of volatile organic compounds such as pyridine and toluene. This behavior is attributed to the free diffusion of these volatile aromatic molecules into the pores of CNFs accompanied by interactions with sp2 carbon structures and other chemical groups on the surface of the fibers.- Published
- 2016
- Full Text
- View/download PDF
17. Self-Assembly and Formation of Chromonic Liquid Crystals from the Dyes Quinaldine Red Acetate and Pyronin Y.
- Author
-
Magana JR, Homs M, Solans C, Obiols-Rabasa M, Salonen LM, and Rodríguez-Abreu C
- Abstract
The aqueous self-assembly behavior of the dyes Quinaldine red acetate and Pyronin Y in a wide range of concentrations is reported here for the first time. (1)H NMR spectroscopy, polarized-light optical microscopy, and small and wide X-ray scattering were used to get insight into molecular interactions, phase boundaries and aggregate structure. Quinaldine red acetate and Pyronin Y self-organize into unimolecular stacks driven by attractive aromatic interactions. At high concentrations, spatial correlation among the molecular stacks gives rise to nematic liquid crystals in both systems. Quinaldine red acetate additionally produces a rare chromonic O phase built of columnar aggregates with anisotropic cross-section ordered in a rectangular lattice. The O phase changes into a columnar lamellar structure as a result of a temperature-induced phase transition. Results open the possibility of finding chromonic liquid crystals in other commercially available dyes with a similar molecular structure. This would eventually expand the availability of these unique soft materials and thus introduce new applications for marketed dyes.
- Published
- 2016
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.