4 results on '"Martinoglio, B."'
Search Results
2. G5 - Analysis of miRNAs and their correlation with early malignat melanoma (MM)
- Author
-
Occelli, M., Nigro, L.o., Vivenza, D., Cauchi, C., Sciancalepore, G., Rovera, M., Silvia, V., Varamo, C., Martinoglio, B., Seia, Z., Bosio, P., Errico, F., Lavagna, F., Forte, G., Palazzini, S., Quaranta, L., Basso, D., Gervasio, S., and Merlano, M.C.
- Published
- 2017
- Full Text
- View/download PDF
3. A novel patient-derived tumorgraft model with TRAF1-ALK anaplastic large-cell lymphoma translocation
- Author
-
Thomas Tousseyn, Elena Lasorsa, M. Ponzoni, Cristina Abele, Andrea Acquaviva, S. A. Pileri, Pier Paolo Piccaluga, Domenico Novero, Maria Todaro, Antonella Barreca, Francesco Abate, Ivo Kwee, Giorgio Inghirami, F Di Giacomo, Javeed Iqbal, Indira Landra, Raul Rabadan, Silvio Aime, Wing C. Chan, Rodolfo Machiorlatti, Mangeng Cheng, Michela Boi, Enrico Tiacci, B Pera-Gresely, Francesco Bertoni, Leonard D. Shultz, J-A van der Krogt, Katia Messana, Bruce Ruggeri, Brunangelo Falini, Sabrina Aliberti, Fabrizio Tabbò, Marcello Gaudiano, Luca Bessone, Roberto Piva, R Crescenzo, Andrea Rinaldi, Iwona Wlodarska, Dario Livio Longo, Elisa Ficarra, Leandro Cerchietti, Abate, F., Todaro, M., Van Der Krogt, J.-A., Boi, M., Landra, I., Machiorlatti, R., Tabbò, F., Messana, K., Abele, C., Barreca, A., Novero, D., Gaudiano, M., Aliberti, S., Di Giacomo, F., Tousseyn, T., Lasorsa, E., Crescenzo, R., Bessone, L., Ficarra, E., Acquaviva, A., Rinaldi, A., Ponzoni, M., Longo, D.L., Aime, S., Cheng, M., Ruggeri, B., Piccaluga, P.P., Pileri, S., Tiacci, E., Falini, B., Pera-Gresely, B., Cerchietti, L., Iqbal, J., Chan, W.C., Shultz, L.D., Kwee, I., Piva, R., Wlodarska, I., Rabadan, R., Bertoni, F., Inghirami, G., The European T-cell Lymphoma Study Group [.., Agostinelli, C., ], European T-cell Lymphoma Study Group, Cavallo, F., Chiesa, N., Fienga, A., di Giacomo, F., Marchiorlatti, R., Martinoglio, B., Medico, E., Ferrero, GB., Mereu, E., Pellegrino, E., Scafò, I., Spaccarotella, E., Ubezzi, I., Urigu, S., Chiapella, A., Vitolo, U., Agnelli, L., Neri, A., Chilosi£££Anna Caliò Marco£££ AC., Zamó, A., Facchetti, F., Lonardi, S., De Chiara, A., Fulciniti, F., Ferreri, A., Piccaluga, PP., Van Loo, P., De Wolf-Peeters, C., Geissinger, E., Muller-Hermelink, HK., Rosenwald, A., Piris, MA., Rodriguez, ME., Chiattone, C., Paes, RA., Abate, F, Todaro, M, van der Krogt, Ja, Boi, M, Landra, I, Machiorlatti, R, Tabbò, F, Messana, K, Abele, C, Barreca, A, Novero, D, Gaudiano, M, Aliberti, S, Di Giacomo, F, Tousseyn, T, Lasorsa, E, Crescenzo, R, Bessone, L, Ficarra, E, Acquaviva, A, Rinaldi, A, Ponzoni, M, Longo, Dl, Aime, S, Cheng, M, Ruggeri, B, Piccaluga, Pp, Pileri, S, Tiacci, E, Falini, B, Pera-Gresely, B, Cerchietti, L, Iqbal, J, Chan, Wc, Shultz, Ld, Kwee, I, Piva, R, Wlodarska, I, Rabadan, R, Bertoni, F, Inghirami, G, and andThe European T-cell Lymphoma Study, Group
- Subjects
Pathology ,Cancer Research ,Lymphoma ,TRAF1 ,Messenger ,Drug Resistance ,Translocation, Genetic ,Fusion gene ,Mice ,Mice, Inbred NOD ,hemic and lymphatic diseases ,Tumor Cells, Cultured ,Anaplastic lymphoma kinase ,Anaplastic ,Anaplastic Lymphoma Kinase ,Anaplastic large-cell lymphoma ,Animals ,Blotting, Western ,Flow Cytometry ,Gene Expression Profiling ,High-Throughput Nucleotide Sequencing ,Humans ,Immunoprecipitation ,In Situ Hybridization, Fluorescence ,Lymphoma, Large-Cell, Anaplastic ,NF-kappa B ,Proteasome Inhibitors ,Proto-Oncogene Proteins c-myc ,RNA, Messenger ,Real-Time Polymerase Chain Reaction ,Receptor Protein-Tyrosine Kinases ,Repressor Proteins ,Reverse Transcriptase Polymerase Chain Reaction ,Signal Transduction ,TNF Receptor-Associated Factor 1 ,Tumor Suppressor Protein p53 ,Xenograft Model Antitumor Assays ,Drug Resistance, Neoplasm ,In Situ Hybridization ,Hematology ,Cultured ,Blotting ,Medicine (all) ,Large-Cell ,Tumor Cells ,Proteasome Inhibitor ,Receptor Protein-Tyrosine Kinase ,Oncology ,Western ,Human ,medicine.medical_specialty ,fusion detection tool ,Xenograft Model Antitumor Assay ,medicine.drug_class ,Translocation ,Anesthesiology and Pain Medicine ,Biology ,anaplastic large-cell lymphomas (ALCL) ,RNA-Seq data ,Fluorescence ,Article ,Genetic ,Internal medicine ,PRDM1 ,medicine ,traslocation ,Animal ,Repressor Protein ,medicine.disease ,ALK inhibitor ,anaplastic lymphoma kinase (ALK) ,Cancer research ,Inbred NOD ,RNA ,Neoplasm ,Positive Regulatory Domain I-Binding Factor 1 ,Lymphoma, Large-Cell, Anaplastic/drug therapy ,Lymphoma, Large-Cell, Anaplastic/genetics ,NF-kappa B/genetics ,NF-kappa B/metabolism ,Proteasome Inhibitors/pharmacology ,Proto-Oncogene Proteins c-myc/genetics ,Proto-Oncogene Proteins c-myc/metabolism ,RNA, Messenger/genetics ,Receptor Protein-Tyrosine Kinases/genetics ,Receptor Protein-Tyrosine Kinases/metabolism ,Repressor Proteins/genetics ,Repressor Proteins/metabolism ,TNF Receptor-Associated Factor 1/genetics ,TNF Receptor-Associated Factor 1/metabolism ,Translocation, Genetic/genetics ,Tumor Suppressor Protein p53/genetics ,Tumor Suppressor Protein p53/metabolism - Abstract
Although anaplastic large-cell lymphomas (ALCL) carrying anaplastic lymphoma kinase (ALK) have a relatively good prognosis, aggressive forms exist. We have identified a novel translocation, causing the fusion of the TRAF1 and ALK genes, in one patient who presented with a leukemic ALK+ ALCL (ALCL-11). To uncover the mechanisms leading to high-grade ALCL, we developed a human patient-derived tumorgraft (hPDT) line. Molecular characterization of primary and PDT cells demonstrated the activation of ALK and nuclear factor kappa B (NF kappa B) pathways. Genomic studies of ALCL-11 showed the TP53 loss and the in vivo subclonal expansion of lymphoma cells, lacking PRDM1/Blimp1 and carrying c-MYC gene amplification. The treatment with proteasome inhibitors of TRAF1-ALK cells led to the downregulation of p50/p52 and lymphoma growth inhibition. Moreover, a NF kappa B gene set classifier stratified ALCL in distinct subsets with different clinical outcome. Although a selective ALK inhibitor (CEP28122) resulted in a significant clinical response of hPDT mice, nevertheless the disease could not be eradicated. These data indicate that the activation of NF kappa B signaling contributes to the neoplastic phenotype of TRAF1-ALK ALCL. ALCL hPDTs are invaluable tools to validate the role of druggable molecules, predict therapeutic responses and implement patient specific therapies.
- Published
- 2015
4. The molecular landscape of colorectal cancer cell lines unveils clinically actionable kinase targets.
- Author
-
Medico E, Russo M, Picco G, Cancelliere C, Valtorta E, Corti G, Buscarino M, Isella C, Lamba S, Martinoglio B, Veronese S, Siena S, Sartore-Bianchi A, Beccuti M, Mottolese M, Linnebacher M, Cordero F, Di Nicolantonio F, and Bardelli A
- Subjects
- Anaplastic Lymphoma Kinase, Cell Line, Tumor, Cetuximab, Colorectal Neoplasms genetics, Genes, erbB-1, Genetic Heterogeneity, Humans, Molecular Targeted Therapy, Proto-Oncogene Proteins c-ret metabolism, Receptor Protein-Tyrosine Kinases genetics, Receptor, Fibroblast Growth Factor, Type 2 metabolism, Colorectal Neoplasms enzymology, ErbB Receptors antagonists & inhibitors, Receptor Protein-Tyrosine Kinases metabolism
- Abstract
The development of molecularly targeted anticancer agents relies on large panels of tumour-specific preclinical models closely recapitulating the molecular heterogeneity observed in patients. Here we describe the mutational and gene expression analyses of 151 colorectal cancer (CRC) cell lines. We find that the whole spectrum of CRC molecular and transcriptional subtypes, previously defined in patients, is represented in this cell line compendium. Transcriptional outlier analysis identifies RAS/BRAF wild-type cells, resistant to EGFR blockade, functionally and pharmacologically addicted to kinase genes including ALK, FGFR2, NTRK1/2 and RET. The same genes are present as expression outliers in CRC patient samples. Genomic rearrangements (translocations) involving the ALK and NTRK1 genes are associated with the overexpression of the corresponding proteins in CRC specimens. The approach described here can be used to pinpoint CRCs with exquisite dependencies to individual kinases for which clinically approved drugs are already available.
- Published
- 2015
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.