6 results on '"Miagoux, Quentin"'
Search Results
2. Deciphering the Molecular Mechanism of Incurable Muscle Disease by a Novel Method for the Interpretation of miRNA Dysregulation
- Author
-
Israeli, David, primary, Vu Hong, Ai, additional, Corre, Guillaume, additional, Miagoux, Quentin, additional, and Richard, Isabelle, additional
- Published
- 2022
- Full Text
- View/download PDF
3. Approche globale intégrative pour l’identification de nouvelles cibles moléculaires dans la polyarthrite rhumatoïde
- Author
-
Miagoux, Quentin, Laboratoire de recherche européen pour la polyarthrite rhumatoïde (GenHotel), Université d'Évry-Val-d'Essonne (UEVE)-Université Paris-Saclay, Université Paris-Saclay, and Elisabeth Petit-Teixeira
- Subjects
Polyarthrite rhumatoïde ,Génomique humaine ,Inférence de réseaux ,Human genomics ,Rare variants ,Variants rares ,[SDV.BC]Life Sciences [q-bio]/Cellular Biology ,Rheumatoid arthritis ,Systems biology ,Network inference ,Biologie des systèmes - Abstract
Rheumatoid arthritis (RA) is a multifactorial, complex autoimmune disease that involves various genetic, environmental, and epigenetic factors. It a_ects in average 0.25 to 0.46% of world population. Nowadays, we understand only 50 % of RA genetic component. Genetic factors involved in RA include a major genetic factor, the HLA-DRB1 gene, and about one hundred of susceptibility factors. In the _rst part of this thesis, we aimed to explain the missing heritability of RA, by looking for new rare variants with exonic and pangenomic data from relatives of RA patients of two samples. We _rst conducted an analysis on simulated exonic data where we identify performant detection tools, including CODEX2. These tools were then used to analyse our real exonic dataset, where 3 CNVs were identi_ed, but unfortunately showed an incomplete penetrance and/or a presence of phenocopy, despite that two of them concern genes involved in RA or immune system. The study of pangenomic data showed 15 rare variants (10 SNVs, 1 indel and 2 CNVs) that were RA speci _c. Seven genes impacted by these variants (4 SNVs, 1 indel and 2 CNVs) were implicated in RA physiopathology, according to the literature. In the second part of this thesis, we used computational system biology approaches to study the complex mechanisms involved in RA pathology, including the regulation of key disease _related transcription factors, which cannot be fully understood with the use of only genomic data. For this purpose, we built an integrative global network for RA, using multi-omic data and statistical inference along with prior knowledge encoded in the form of a molecular interaction map. The network is used as a template to study RA patient response to anti-TNF treatment and to identify master regulators and upstream cascades a_ected by the treatment. Finally, we employ the logical formalism and transform a subnetwork into a Boolean model to perform in silico simulations mimicking the e_ects of single and combined perturbations induced by therapies and genetic predisposition. The results show that TNF blockage was not su_cient to downregulate the activity of TFs linked to in- _ammation, suggesting that combined targeted therapies might be a plausible scenario for the non-responders to anti-TNF therapy.; La polyarthrite rhumatoïde (PR) est une maladie multifactorielle complexe et autoimmune, impliquant des facteurs génétiques, épigénétiques et environnementaux. Elle touche en moyenne 0.25 à 0.46% de la population mondiale. Aujourd'hui, notre connaissance de la composante génétique de la maladie est estimée à uniquement 50%. Ainsi, a_n d'expliquer la part d'héritabilité manquante, nous avons en premier lieu focalisé nos recherches sur l'identi_cation de nouveaux facteurs génétiques de la PR en analysant les variants rares à partir de données exoniques et pangénomiques de familles de patients atteints de PR dans deux cohortes di_érentes. À partir de simulation de données exoniques, nous avons identi- _é des outils performants pour l'identi_cation de CNVs, incluant CODEX2. Ces outils, utilis és par la suite sur les données exoniques, ont permis d'identi_er 3 CNVs rares qui ont cependant montré une pénétrance incomplète et/ou la présence de phénocopie, malgré une potentielle implication pour deux d'entre eux dans la PR ou dans le système immunitaire. L'étude des variants rares à partir de données pangénomiques nous a permis d'identi_er 15 variants (10 SNVs, 2 indels et 3 CNVs) rares spéci_ques de la PR. Sept gènes impactés par ces variants (incluant 4 SNVs, 1 indel et 2 CNVs) ont montré une implication dans la physiopathologie de la PR selon la littérature. Dans la seconde partie de cette thèse, nous avons utilisé la biologie computationnelle des systèmes a_n d'étudier des mé- canismes complexes impliqués dans la pathologie de la PR tels que les facteurs de transcription (TF), régulateurs clés dans les maladies, ne pouvant être étudiés uniquement à l'aide de donn ées génomiques. Pour cela, un réseau global et spéci_que de la PR a été créé, en combinant des données multi-omiques et des méthodes d'inférence et une carte d'interaction moléculaire de la PR. Ce réseau a ensuite été utilisé comme base a_n d'analyser et d'identi_er les voies de signalisation a_ectées par la réponse à des traitements anti-TNF de patients atteints de PR. Dans ce but nous avons utilisé le formalisme et transformé notre réseau en modèle booléen a_n de réaliser des simulations in silico, dans le but de répliquer des perturbations combin ées et isolées induites par des thérapies et des prédispositions génétiques. Ces résultats montrent que le blocage de TNF n'est pas su_sant pour stopper l'activité des TFs liés à une in_ammation, suggérant que l'utilisation de thérapies combinées et ciblées est un scénario plausible pour des patients non-répondeurs à des traitements anti-TNF.
- Published
- 2022
4. Inference of an Integrative, Executable Network for Rheumatoid Arthritis Combining Data-Driven Machine Learning Approaches and a State-of-the-Art Mechanistic Disease Map
- Author
-
Miagoux, Quentin, primary, Singh, Vidisha, additional, de Mézquita, Dereck, additional, Chaudru, Valerie, additional, Elati, Mohamed, additional, Petit-Teixeira, Elisabeth, additional, and Niarakis, Anna, additional
- Published
- 2021
- Full Text
- View/download PDF
5. Combining bottom-up and top-down systems biology methods to obtain an integrative, global RA-specific network
- Author
-
MIAGOUX Quentin, de MEZQUITA Dereck, SING Vidisha, CHALABI Smahane, PETIT-TEIXEIRA Elisabeth, and NIARAKIS Anna
- Subjects
Rheumatoid arthritis molecular map ,Rheumatoid arthritis specific variants ,Machine learning ,Rheumatoid arthritis ,Network inference ,co-regulatory network - Abstract
Rheumatoid arthritis (RA) is a multifactorial autoimmune disease that causes chronic inflammation of the joints, with an aetiology still unclear. RA is a complex inflammatory disease that involves an interconnected array of genetic, environmental, and epigenetic factors. Recently, systems biology and network-based approaches have been proposed to study such complex diseases. Combining multiple data types allows us to discover new knowledge as integration can help compensate for missing or unreliable information. Moreover, if multiple sources of evidence point to the same outcome then it is less likely to obtain false positives. Among computational approaches, machine learning stands out as a promising field in bioinformatics, as it allows for integration of multi-omic biomedical datasets. In this work, we present our efforts to integrate different layers of biological data in the form of networks in order to obtain a global view of the disease. To do so, we make use of publicly available transcriptomic datasets (peripheral blood) relative to RA and a variety of bioinformatics analyses such as statistical analysis, differential expression analysis, and machine learning network inference (Nicolle et al., 2015) to infer an RA-specific TF co-regulatory network. The TF cooperativity network is subsequently enriched in signalling cascades and upstream regulators using the state of the art RA map based on the functional overlaps between the two networks (Singh et al., 2020). Lastly, a list of RA specific variants available in DisGeNET (Piñero et al., 2020) will be used as an overlap to highlight key genes associated with known disease mutations. We combine three different biological layers (gene expression, signalling cascades, mutations), obtained by bottom-up prior knowledge-based (DisGenNET, RA map) and top-down data-driven (CoRegNet) methods to build an integrative, disease-specific network. The goal behind this endeavor is to unravel mechanisms governing the regulation of key genes identified as mutation carriers in RA and also derive patient-specific models to gain more insights into the disease heterogeneity.  
- Published
- 2020
- Full Text
- View/download PDF
6. Synergism of dual AAV gene therapy and rapamycin rescues GSDIII phenotype in muscle and liver.
- Author
-
Jauze L, Vie M, Miagoux Q, Rossiaud L, Vidal P, Montalvo-Romeral V, Saliba H, Jarrige M, Polveche H, Nozi J, Le Brun PR, Bocchialini L, Francois A, Cosette J, Rouillon J, Collaud F, Bordier F, Bertil-Froidevaux E, Georger C, van Wittenberghe L, Miranda A, Daniele NF, Gross DA, Hoch L, Nissan X, and Ronzitti G
- Subjects
- Animals, Mice, Muscle, Skeletal metabolism, Phenotype, Glycogen Debranching Enzyme System genetics, Glycogen Debranching Enzyme System metabolism, Humans, Male, Sirolimus pharmacology, Sirolimus therapeutic use, Dependovirus genetics, Genetic Therapy methods, Liver metabolism, Genetic Vectors genetics, Genetic Vectors administration & dosage, Disease Models, Animal
- Abstract
Glycogen storage disease type III (GSDIII) is a rare metabolic disorder due to glycogen debranching enzyme (GDE) deficiency. Reduced GDE activity leads to pathological glycogen accumulation responsible for impaired hepatic metabolism and muscle weakness. To date, there is no curative treatment for GSDIII. We previously reported that 2 distinct dual AAV vectors encoding for GDE were needed to correct liver and muscle in a GSDIII mouse model. Here, we evaluated the efficacy of rapamycin in combination with AAV gene therapy. Simultaneous treatment with rapamycin and a potentially novel dual AAV vector expressing GDE in the liver and muscle resulted in a synergic effect demonstrated at biochemical and functional levels. Transcriptomic analysis confirmed synergy and suggested a putative mechanism based on the correction of lysosomal impairment. In GSDIII mice livers, dual AAV gene therapy combined with rapamycin reduced the effect of the immune response to AAV observed in this disease model. These data provide proof of concept of an approach exploiting the combination of gene therapy and rapamycin to improve efficacy and safety and to support clinical translation.
- Published
- 2024
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.