1. Evaluation of Question Answering Systems: Complexity of judging a natural language
- Author
-
Farea, Amer, Yang, Zhen, Duong, Kien, Perera, Nadeesha, and Emmert-Streib, Frank
- Subjects
Computer Science - Computation and Language ,Computer Science - Artificial Intelligence - Abstract
Question answering (QA) systems are among the most important and rapidly developing research topics in natural language processing (NLP). A reason, therefore, is that a QA system allows humans to interact more naturally with a machine, e.g., via a virtual assistant or search engine. In the last decades, many QA systems have been proposed to address the requirements of different question-answering tasks. Furthermore, many error scores have been introduced, e.g., based on n-gram matching, word embeddings, or contextual embeddings to measure the performance of a QA system. This survey attempts to provide a systematic overview of the general framework of QA, QA paradigms, benchmark datasets, and assessment techniques for a quantitative evaluation of QA systems. The latter is particularly important because not only is the construction of a QA system complex but also its evaluation. We hypothesize that a reason, therefore, is that the quantitative formalization of human judgment is an open problem.
- Published
- 2022