3 results on '"Rieländer, D."'
Search Results
2. Challenging local realism with human choices
- Author
-
The BIG Bell Test Collaboration, Abellán, C., Acín, A., Alarcón, A., Alibart, O., Andersen, C. K., Andreoli, F., Beckert, A., Beduini, F. A., Bendersky, A., Bentivegna, M., Bierhorst, P., Burchardt, D., Cabello, A., Cariñe, J., Carrasco, S., Carvacho, G., Cavalcanti, D., Chaves, R., Cortés-Vega, J., Cuevas, A., Delgado, A., de Riedmatten, H., Eichler, C., Farrera, P., Fuenzalida, J., García-Matos, M., Garthoff, R., Gasparinetti, S., Gerrits, T., Jouneghani, F. Ghafari, Glancy, S., Gómez, E. S., González, P., Guan, J. -Y., Handsteiner, J., Heinsoo, J., Heinze, G., Hirschmann, A., Jiménez, O., Kaiser, F., Knill, E., Knoll, L. T., Krinner, S., Kurpiers, P., Larotonda, M. A., Larsson, J. -Å., Lenhard, A., Li, H., Li, M. -H., Lima, G., Liu, B., Liu, Y., Grande, I. H. López, Lunghi, T., Ma, X., Magaña-Loaiza, O. S., Magnard, P., Magnoni, A., Martí-Prieto, M., Martínez, D., Mataloni, P., Mattar, A., Mazzera, M., Mirin, R. P., Mitchell, M. W., Nam, S., Oppliger, M., Pan, J. -W., Patel, R. B., Pryde, G. J., Rauch, D., Redeker, K., Rieländer, D., Ringbauer, M., Roberson, T., Rosenfeld, W., Salathé, Y., Santodonato, L., Sauder, G., Scheidl, T., Schmiegelow, C. T., Sciarrino, F., Seri, A., Shalm, L. K., Shi, S. -C., Slussarenko, S., Stevens, M. J., Tanzilli, S., Toledo, F., Tura, J., Ursin, R., Vergyris, P., Verma, V. B., Walter, T., Wallraff, A., Wang, Z., Weinfurter, H., Weston, M. M., White, A. G., Wu, C., Xavier, G. B., You, L., Yuan, X., Zeilinger, A., Zhang, Q., Zhang, W., Zhong, J., Institut de Ciencies Fotoniques [Castelldefels] ( ICFO ), Institució Catalana de Recerca i Estudis Avançats ( ICREA ), Universidad de Concepción [Chile], Institut de Physique de Nice ( INPHYNI ), Université Nice Sophia Antipolis ( UNS ), Université Côte d'Azur ( UCA ) -Université Côte d'Azur ( UCA ) -Centre National de la Recherche Scientifique ( CNRS ), Swiss Federal Institute of Technology in Zürich ( ETH Zürich ), Università degli Studi di Roma 'La Sapienza' [Rome], Universidad de Buenos Aires [Buenos Aires], National Institute of Standards and Technologies ( NIST ), Ludwig-Maximilians-Universität München, Universidad de Sevilla, Federal University of Rio Grande do Norte, Institut fur Quantenoptik und Quanteninformation ( IQOQI ), Osterreichische Akademie der Wissenschaften ( ÖAW ), University of Vienna [Vienna], Griffith University [Brisbane], University of Science and Technology of China, Linköping University ( LIU ), Chinese Academy of Sciences, Tsinghua University [Beijing], University of Queensland [Brisbane], Max-Planck-Institut für Quantenoptik ( MPQ ), Max-Planck-Institut, Institut de Ciencies Fotoniques [Castelldefels] (ICFO), Institució Catalana de Recerca i Estudis Avançats (ICREA), Institut de Physique de Nice (INPHYNI), Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA), Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich), Università degli Studi di Roma 'La Sapienza' = Sapienza University [Rome], Universidad de Buenos Aires [Buenos Aires] (UBA), National Institute of Standards and Technology [Gaithersburg] (NIST), Ludwig-Maximilians-Universität München (LMU), Institut fur Quantenoptik und Quanteninformation (IQOQI), Osterreichische Akademie der Wissenschaften (ÖAW), Linköping University (LIU), Tsinghua University [Beijing] (THU), Max-Planck-Institut für Quantenoptik (MPQ), Max-Planck-Gesellschaft, and Patel, R
- Subjects
Freedom ,[ PHYS.QPHY ] Physics [physics]/Quantum Physics [quant-ph] ,FOS: Physical sciences ,Geographic Mapping ,Quantum entanglement ,Choice Behavior ,01 natural sciences ,010305 fluids & plasmas ,Quantum nonlocality ,[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph] ,Human–computer interaction ,Teknik och teknologier ,Naturvetenskap ,0103 physical sciences ,Humans ,Bell test experiments ,010306 general physics ,Set (psychology) ,ComputingMilieux_MISCELLANEOUS ,Randomness ,Quantum Mechanics ,Quantum Physics ,Multidisciplinary ,Quantum Information ,Single Photons and Qauntum Effects ,Data flow diagram ,Video Games ,Hidden variable theory ,Scalability ,Engineering and Technology ,Quantum Physics (quant-ph) ,Natural Sciences - Abstract
A Bell test is a randomized trial that compares experimental observations against the philosophical worldview of local realism. A Bell test requires spatially distributed entanglement, fast and high-efficiency detection and unpredictable measurement settings. Although technology can satisfy the first two of these requirements, the use of physical devices to choose settings in a Bell test involves making assumptions about the physics that one aims to test. Bell himself noted this weakness in using physical setting choices and argued that human `free will' could be used rigorously to ensure unpredictability in Bell tests. Here we report a set of local-realism tests using human choices, which avoids assumptions about predictability in physics. We recruited about 100,000 human participants to play an online video game that incentivizes fast, sustained input of unpredictable selections and illustrates Bell-test methodology. The participants generated 97,347,490 binary choices, which were directed via a scalable web platform to 12 laboratories on five continents, where 13 experiments tested local realism using photons, single atoms, atomic ensembles, and superconducting devices. Over a 12-hour period on 30 November 2016, participants worldwide provided a sustained data flow of over 1,000 bits per second to the experiments, which used different human-generated data to choose each measurement setting. The observed correlations strongly contradict local realism and other realistic positions in bipartite and tripartite scenarios. Project outcomes include closing the `freedom-of-choice loophole' (the possibility that the setting choices are influenced by `hidden variables' to correlate with the particle properties), the utilization of video-game methods for rapid collection of human generated randomness, and the use of networking techniques for global participation in experimental science., This version includes minor changes resulting from reviewer and editorial input. Abstract shortened to fit within arXiv limits
- Published
- 2018
- Full Text
- View/download PDF
3. Challenging Local Realism with Human Choices
- Author
-
Abellán, C., Acín, A., Alarcón, A., Alibart, O., Andersen, C. K., Andreoli, F., Beckert, A., Beduini, F. A., Bendersky, A., Bentivegna, M., Bierhorst, P., Burchardt, D., Cabello, A., Cariñe, J., Carrasco, S., Carvacho, G., Cavalcanti, D., Chaves, R., Cortés-Vega, J., Cuevas, A., Delgado, A., de Riedmatten, H., Eichler, C., Farrera, P., Fuenzalida, J., García-Matos, M., Garthoff, R., Gasparinetti, S., Gerrits, T., Ghafari Jouneghani, F., Glancy, S., Gómez, E. S., González, P., Guan, J. -Y., Handsteiner, J., Heinsoo, J., Heintze, G., Hirschmann, A., Jiménez, O., Kaiser, F., Knill, E., Knoll, L. T., Krinner, S., Kurpiers, P., Larotonda, M. A., Larsson, Jan-Åke, Lenhard, A., Li, H., Li, M. -H., Lima, G., Liu, B., Liu, Y., López Grande, I. H., Lunghi, T., Ma, X., Magaña-Loaiza, O. S., Magnard, P., Magnoni, A., Martí-Prieto, M., Martínez, D., Mataloni, P., Mattar, A., Mazzera, M., Mirin, R. P., Mitchell, M. W., Nam, S., Oppliger, M., Pan, J. -W., Patel, R. B., Pryde, G. J., Rauch, D., Redeker, K., Rieländer, D., Ringbauer, M., Roberson, T., Rosenfeld, W., Salathé, Y., Santodonato, L., Sauder, G., Scheidl, T., Schmiegelow, C. T., Sciarrino, F., Seri, A., Shalm, L. K., Shi, S. -C, Slussarenko, S., Stevens, M. J., Tanzilli, S., Toledo, F., Tura, J., Ursin, R., Vergyris, P., Verma, V. B., Walter, T., Wallraff, A., Wang, Z., Weinfurter, H., Weston, M. M., White, A. G., Wu, C., Xavier, Guilherme B., You, L., Yuan, X., Zeilinger, A., Zhang, Q., Zhang, W., Zhong, J., Abellán, C., Acín, A., Alarcón, A., Alibart, O., Andersen, C. K., Andreoli, F., Beckert, A., Beduini, F. A., Bendersky, A., Bentivegna, M., Bierhorst, P., Burchardt, D., Cabello, A., Cariñe, J., Carrasco, S., Carvacho, G., Cavalcanti, D., Chaves, R., Cortés-Vega, J., Cuevas, A., Delgado, A., de Riedmatten, H., Eichler, C., Farrera, P., Fuenzalida, J., García-Matos, M., Garthoff, R., Gasparinetti, S., Gerrits, T., Ghafari Jouneghani, F., Glancy, S., Gómez, E. S., González, P., Guan, J. -Y., Handsteiner, J., Heinsoo, J., Heintze, G., Hirschmann, A., Jiménez, O., Kaiser, F., Knill, E., Knoll, L. T., Krinner, S., Kurpiers, P., Larotonda, M. A., Larsson, Jan-Åke, Lenhard, A., Li, H., Li, M. -H., Lima, G., Liu, B., Liu, Y., López Grande, I. H., Lunghi, T., Ma, X., Magaña-Loaiza, O. S., Magnard, P., Magnoni, A., Martí-Prieto, M., Martínez, D., Mataloni, P., Mattar, A., Mazzera, M., Mirin, R. P., Mitchell, M. W., Nam, S., Oppliger, M., Pan, J. -W., Patel, R. B., Pryde, G. J., Rauch, D., Redeker, K., Rieländer, D., Ringbauer, M., Roberson, T., Rosenfeld, W., Salathé, Y., Santodonato, L., Sauder, G., Scheidl, T., Schmiegelow, C. T., Sciarrino, F., Seri, A., Shalm, L. K., Shi, S. -C, Slussarenko, S., Stevens, M. J., Tanzilli, S., Toledo, F., Tura, J., Ursin, R., Vergyris, P., Verma, V. B., Walter, T., Wallraff, A., Wang, Z., Weinfurter, H., Weston, M. M., White, A. G., Wu, C., Xavier, Guilherme B., You, L., Yuan, X., Zeilinger, A., Zhang, Q., Zhang, W., and Zhong, J.
- Abstract
A Bell test is a randomized trial that compares experimental observations against the philosophical worldview of local realism , in which the properties of the physical world are independent of our observation of them and no signal travels faster than light. A Bell test requires spatially distributed entanglement, fast and high-efficiency detection and unpredictable measurement settings. Although technology can satisfy the first two of these requirements, the use of physical devices to choose settings in a Bell test involves making assumptions about the physics that one aims to test. Bell himself noted this weakness in using physical setting choices and argued that human 'free will' could be used rigorously to ensure unpredictability in Bell tests. Here we report a set of local-realism tests using human choices, which avoids assumptions about predictability in physics. We recruited about 100,000 human participants to play an online video game that incentivizes fast, sustained input of unpredictable selections and illustrates Bell-test methodology. The participants generated 97,347,490 binary choices, which were directed via a scalable web platform to 12 laboratories on five continents, where 13 experiments tested local realism using photons, single atoms, atomic ensembles and superconducting devices. Over a 12-hour period on 30 November 2016, participants worldwide provided a sustained data flow of over 1,000 bits per second to the experiments, which used different human-generated data to choose each measurement setting. The observed correlations strongly contradict local realism and other realistic positions in bi-partite and tri-partite 12 scenarios. Project outcomes include closing the 'freedom-of-choice loophole' (the possibility that the setting choices are influenced by 'hidden variables' to correlate with the particle properties), the utilization of video-game methods for rapid collection of human-generated randomness, and the use of networking techniques for
- Published
- 2018
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.