6 results on '"Simonis-Bik, Annemarie M C"'
Search Results
2. Integrative network analysis highlights biological processes underlying GLP-1 stimulated insulin secretion:A DIRECT study
- Author
-
Gudmundsdottir, Valborg, Pedersen, Helle Krogh, Allebrandt, Karla Viviani, Brorsson, Caroline Anna, van Leeuwen, Nienke, Banasik, Karina, Mahajan, Anubha, Groves, Christopher J, van de Bunt, Martijn, Dawed, Adem Y, Fritsche, Andreas, Staiger, Harald, Simonis-Bik, Annemarie M C, Deelen, Joris, Kramer, Mark H H, Dietrich, Axel, Hübschle, Thomas, Willemsen, Gonneke, Häring, Hans-Ulrich, de Geus, Eco J C, Boomsma, Dorret I, Eekhoff, Elisabeth M W, Ferrer, Jorge, McCarthy, Mark I, Pearson, Ewan R, Gupta, Ramneek, Brunak, Søren, 't Hart, Leen M, Gudmundsdottir, Valborg, Pedersen, Helle Krogh, Allebrandt, Karla Viviani, Brorsson, Caroline Anna, van Leeuwen, Nienke, Banasik, Karina, Mahajan, Anubha, Groves, Christopher J, van de Bunt, Martijn, Dawed, Adem Y, Fritsche, Andreas, Staiger, Harald, Simonis-Bik, Annemarie M C, Deelen, Joris, Kramer, Mark H H, Dietrich, Axel, Hübschle, Thomas, Willemsen, Gonneke, Häring, Hans-Ulrich, de Geus, Eco J C, Boomsma, Dorret I, Eekhoff, Elisabeth M W, Ferrer, Jorge, McCarthy, Mark I, Pearson, Ewan R, Gupta, Ramneek, Brunak, Søren, and 't Hart, Leen M
- Abstract
Glucagon-like peptide 1 (GLP-1) stimulated insulin secretion has a considerable heritable component as estimated from twin studies, yet few genetic variants influencing this phenotype have been identified. We performed the first genome-wide association study (GWAS) of GLP-1 stimulated insulin secretion in non-diabetic individuals from the Netherlands Twin register (n = 126). This GWAS was enhanced using a tissue-specific protein-protein interaction network approach. We identified a beta-cell protein-protein interaction module that was significantly enriched for low gene scores based on the GWAS P-values and found support at the network level in an independent cohort from Tübingen, Germany (n = 100). Additionally, a polygenic risk score based on SNPs prioritized from the network was associated (P < 0.05) with glucose-stimulated insulin secretion phenotypes in up to 5,318 individuals in MAGIC cohorts. The network contains both known and novel genes in the context of insulin secretion and is enriched for members of the focal adhesion, extracellular-matrix receptor interaction, actin cytoskeleton regulation, Rap1 and PI3K-Akt signaling pathways. Adipose tissue is, like the beta-cell, one of the target tissues of GLP-1 and we thus hypothesized that similar networks might be functional in both tissues. In order to verify peripheral effects of GLP-1 stimulation, we compared the transcriptome profiling of ob/ob mice treated with liraglutide, a clinically used GLP-1 receptor agonist, versus baseline controls. Some of the upstream regulators of differentially expressed genes in the white adipose tissue of ob/ob mice were also detected in the human beta-cell network of genes associated with GLP-1 stimulated insulin secretion. The findings provide biological insight into the mechanisms through which the effects of GLP-1 may be modulated and highlight a potential role of the beta-cell expressed genes RYR2, GDI2, KIAA0232, COL4A1 and COL4A2 in GLP-1 stimulated insulin secre
- Published
- 2018
3. Integrative network analysis highlights biological processes underlying GLP-1 stimulated insulin secretion: A DIRECT study
- Author
-
Gudmundsdottir, Valborg, Pedersen, Helle Krogh, Allebrandt, Karla Viviani, Brorsson, Caroline Anna, van Leeuwen, Nienke, Banasik, Karina, Mahajan, Anubha, Groves, Christopher J, van de Bunt, Martijn, Dawed, Adem Y, Fritsche, Andreas, Staiger, Harald, Simonis-Bik, Annemarie M C, Deelen, Joris, Kramer, Mark H H, Dietrich, Axel, Hübschle, Thomas, Willemsen, Gonneke, Häring, Hans-Ulrich, de Geus, Eco J C, Boomsma, Dorret I, Eekhoff, Elisabeth M W, Ferrer, Jorge, McCarthy, Mark I, Pearson, Ewan R, Gupta, Ramneek, Brunak, Søren, 't Hart, Leen M, Gudmundsdottir, Valborg, Pedersen, Helle Krogh, Allebrandt, Karla Viviani, Brorsson, Caroline Anna, van Leeuwen, Nienke, Banasik, Karina, Mahajan, Anubha, Groves, Christopher J, van de Bunt, Martijn, Dawed, Adem Y, Fritsche, Andreas, Staiger, Harald, Simonis-Bik, Annemarie M C, Deelen, Joris, Kramer, Mark H H, Dietrich, Axel, Hübschle, Thomas, Willemsen, Gonneke, Häring, Hans-Ulrich, de Geus, Eco J C, Boomsma, Dorret I, Eekhoff, Elisabeth M W, Ferrer, Jorge, McCarthy, Mark I, Pearson, Ewan R, Gupta, Ramneek, Brunak, Søren, and 't Hart, Leen M
- Abstract
Glucagon-like peptide 1 (GLP-1) stimulated insulin secretion has a considerable heritable component as estimated from twin studies, yet few genetic variants influencing this phenotype have been identified. We performed the first genome-wide association study (GWAS) of GLP-1 stimulated insulin secretion in non-diabetic individuals from the Netherlands Twin register (n = 126). This GWAS was enhanced using a tissue-specific protein-protein interaction network approach. We identified a beta-cell protein-protein interaction module that was significantly enriched for low gene scores based on the GWAS P-values and found support at the network level in an independent cohort from Tübingen, Germany (n = 100). Additionally, a polygenic risk score based on SNPs prioritized from the network was associated (P <0.05) with glucose-stimulated insulin secretion phenotypes in up to 5,318 individuals in MAGIC cohorts. The network contains both known and novel genes in the context of insulin secretion and is enriched for members of the focal adhesion, extracellular-matrix receptor interaction, actin cytoskeleton regulation, Rap1 and PI3K-Akt signaling pathways. Adipose tissue is, like the beta-cell, one of the target tissues of GLP-1 and we thus hypothesized that similar networks might be functional in both tissues. In order to verify peripheral effects of GLP-1 stimulation, we compared the transcriptome profiling of ob/ob mice treated with liraglutide, a clinically used GLP-1 receptor agonist, versus baseline controls. Some of the upstream regulators of differentially expressed genes in the white adipose tissue of ob/ob mice were also detected in the human beta-cell network of genes associated with GLP-1 stimulated insulin secretion. The findings provide biological insight into the mechanisms through which the effects of GLP-1 may be modulated and highlight a potential role of the beta-cell expressed genes RYR2, GDI2, KIAA0232, COL4A1 and COL4A2 in GLP-1 stimulated insulin secretion
- Published
- 2018
4. Integrative network analysis highlights biological processes underlying GLP-1 stimulated insulin secretion: A DIRECT study
- Author
-
Gudmundsdottir, Valborg, primary, Pedersen, Helle Krogh, additional, Allebrandt, Karla Viviani, additional, Brorsson, Caroline, additional, van Leeuwen, Nienke, additional, Banasik, Karina, additional, Mahajan, Anubha, additional, Groves, Christopher J., additional, van de Bunt, Martijn, additional, Dawed, Adem Y., additional, Fritsche, Andreas, additional, Staiger, Harald, additional, Simonis-Bik, Annemarie M. C., additional, Deelen, Joris, additional, Kramer, Mark H. H., additional, Dietrich, Axel, additional, Hübschle, Thomas, additional, Willemsen, Gonneke, additional, Häring, Hans-Ulrich, additional, de Geus, Eco J. C., additional, Boomsma, Dorret I., additional, Eekhoff, Elisabeth M. W., additional, Ferrer, Jorge, additional, McCarthy, Mark I., additional, Pearson, Ewan R., additional, Gupta, Ramneek, additional, Brunak, Søren, additional, and ‘t Hart, Leen M., additional
- Published
- 2018
- Full Text
- View/download PDF
5. A Genome-Wide Association Study of IVGTT-Based Measures of First Phase Insulin Secretion Refines the Underlying Physiology of Type 2 Diabetes Variants
- Author
-
Wood, Andrew R, Jonsson, Anna, Jackson, Anne U, Wang, Tian-Nan, van Leewen, Nienke, Palmer, Nicholette D, Kobes, Sayuko, Deelen, Joris, Boquete-Vilarino, Lorena, Paananen, Jussi, Stančáková, Alena, Boomsma, Dorret I, de Geus, Eco Jc, Eekhoff, Elisabeth Mw, Fritsche, Andreas, Kramer, Mark, Nijpels, Giel, Simonis-Bik, Annemarie M C, van Haeften, Timon W, Mahajan, Anubha, Boehnke, Michael, Bergman, Richard N, Tuomilehto, Jaakko, Collins, Francis S, Mohlke, Karen L, Banasik, Karina, Groves, Christopher J, McCarthy, Mark I, Pearson, Ewan R, Natali, Andrea, Mari, Andrea, Buchanan, Thomas A, Taylor, Kent D, Xiang, Anny H, Gjesing, Anette P, Grarup, Niels, Eiberg, Hans, Pedersen, Oluf, Chen, Yii-Derr, Laakso, Markku, Norris, Jill M, Smith, Ulf, Wagenknecht, Lynne E, Baier, Leslie, Bowden, Donald W, Hansen, Torben, Walker, Mark, Watanabe, Richard M, 't Hart, Leen M, Hanson, Robert L, Frayling, Timothy M, Wood, Andrew R, Jonsson, Anna, Jackson, Anne U, Wang, Tian-Nan, van Leewen, Nienke, Palmer, Nicholette D, Kobes, Sayuko, Deelen, Joris, Boquete-Vilarino, Lorena, Paananen, Jussi, Stančáková, Alena, Boomsma, Dorret I, de Geus, Eco Jc, Eekhoff, Elisabeth Mw, Fritsche, Andreas, Kramer, Mark, Nijpels, Giel, Simonis-Bik, Annemarie M C, van Haeften, Timon W, Mahajan, Anubha, Boehnke, Michael, Bergman, Richard N, Tuomilehto, Jaakko, Collins, Francis S, Mohlke, Karen L, Banasik, Karina, Groves, Christopher J, McCarthy, Mark I, Pearson, Ewan R, Natali, Andrea, Mari, Andrea, Buchanan, Thomas A, Taylor, Kent D, Xiang, Anny H, Gjesing, Anette P, Grarup, Niels, Eiberg, Hans, Pedersen, Oluf, Chen, Yii-Derr, Laakso, Markku, Norris, Jill M, Smith, Ulf, Wagenknecht, Lynne E, Baier, Leslie, Bowden, Donald W, Hansen, Torben, Walker, Mark, Watanabe, Richard M, 't Hart, Leen M, Hanson, Robert L, and Frayling, Timothy M
- Abstract
Understanding the physiological mechanisms by which common variants predispose to type 2 diabetes requires large studies with detailed measures of insulin secretion and sensitivity. Here we performed the largest genome-wide association study of first-phase insulin secretion, as measured by intravenous glucose tolerance tests, using up to 5,567 individuals without diabetes from 10 studies. We aimed to refine the mechanisms of 178 known associations between common variants and glycemic traits and identify new loci. Thirty type 2 diabetes or fasting glucose–raising alleles were associated with a measure of first-phase insulin secretion at P < 0.05 and provided new evidence, or the strongest evidence yet, that insulin secretion, intrinsic to the islet cells, is a key mechanism underlying the associations at the HNF1A, IGF2BP2, KCNQ1, HNF1B, VPS13C/C2CD4A, FAF1, PTPRD, AP3S2, KCNK16, MAEA, LPP, WFS1, and TMPRSS6 loci. The fasting glucose–raising allele near PDX1, a known key insulin transcription factor, was strongly associated with lower first-phase insulin secretion but has no evidence for an effect on type 2 diabetes risk. The diabetes risk allele at TCF7L2 was associated with a stronger effect on peak insulin response than on C-peptide–based insulin secretion rate, suggesting a possible additional role in hepatic insulin clearance or insulin processing. In summary, our study provides further insight into the mechanisms by which common genetic variation influences type 2 diabetes risk and glycemic traits.
- Published
- 2017
6. Metabolite ratios as potential biomarkers for type 2 diabetes: a DIRECT study.
- Author
-
Molnos, Sophie, Wahl, Simone, Haid, Mark, Eekhoff, E. Marelise W., Pool, René, Floegel, Anna, Deelen, Joris, Much, Daniela, Prehn, Cornelia, Breier, Michaela, Draisma, Harmen H., van Leeuwen, Nienke, Simonis-Bik, Annemarie M. C., Jonsson, Anna, Willemsen, Gonneke, Bernigau, Wolfgang, Wang-Sattler, Rui, Suhre, Karsten, Peters, Annette, and Thorand, Barbara
- Abstract
Aims/hypothesis: Circulating metabolites have been shown to reflect metabolic changes during the development of type 2 diabetes. In this study we examined the association of metabolite levels and pairwise metabolite ratios with insulin responses after glucose, glucagon-like peptide-1 (GLP-1) and arginine stimulation. We then investigated if the identified metabolite ratios were associated with measures of OGTT-derived beta cell function and with prevalent and incident type 2 diabetes. Methods: We measured the levels of 188 metabolites in plasma samples from 130 healthy members of twin families (from the Netherlands Twin Register) at five time points during a modified 3 h hyperglycaemic clamp with glucose, GLP-1 and arginine stimulation. We validated our results in cohorts with OGTT data ( n = 340) and epidemiological case-control studies of prevalent ( n = 4925) and incident ( n = 4277) diabetes. The data were analysed using regression models with adjustment for potential confounders. Results: There were dynamic changes in metabolite levels in response to the different secretagogues. Furthermore, several fasting pairwise metabolite ratios were associated with one or multiple clamp-derived measures of insulin secretion (all p < 9.2 × 10). These associations were significantly stronger compared with the individual metabolite components. One of the ratios, valine to phosphatidylcholine acyl-alkyl C32:2 (PC ae C32:2), in addition showed a directionally consistent positive association with OGTT-derived measures of insulin secretion and resistance ( p ≤ 5.4 × 10) and prevalent type 2 diabetes (OR 2.64 [β 0.97 ± 0.09], p = 1.0 × 10). Furthermore, Val_PC ae C32:2 predicted incident diabetes independent of established risk factors in two epidemiological cohort studies (HR 1.57 [β 0.45 ± 0.06]; p = 1.3 × 10), leading to modest improvements in the receiver operating characteristics when added to a model containing a set of established risk factors in both cohorts (increases from 0.780 to 0.801 and from 0.862 to 0.865 respectively, when added to the model containing traditional risk factors + glucose). Conclusions/interpretation: In this study we have shown that the Val_PC ae C32:2 metabolite ratio is associated with an increased risk of type 2 diabetes and measures of insulin secretion and resistance. The observed effects were stronger than that of the individual metabolites and independent of known risk factors. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.