27 results on '"Tegen, I"'
Search Results
2. Biodiversity and Climate Extremes: Known Interactions and Research Gaps
- Author
-
Mahecha, M. D., primary, Bastos, A., additional, Bohn, F. J., additional, Eisenhauer, N., additional, Feilhauer, H., additional, Hickler, T., additional, Kalesse‐Los, H., additional, Migliavacca, M., additional, Otto, F. E. L., additional, Peng, J., additional, Sippel, S., additional, Tegen, I., additional, Weigelt, A., additional, Wendisch, M., additional, Wirth, C., additional, Al‐Halbouni, D., additional, Deneke, H., additional, Doktor, D., additional, Dunker, S., additional, Duveiller, G., additional, Ehrlich, A., additional, Foth, A., additional, García‐García, A., additional, Guerra, C. A., additional, Guimarães‐Steinicke, C., additional, Hartmann, H., additional, Henning, S., additional, Herrmann, H., additional, Hu, P., additional, Ji, C., additional, Kattenborn, T., additional, Kolleck, N., additional, Kretschmer, M., additional, Kühn, I., additional, Luttkus, M. L., additional, Maahn, M., additional, Mönks, M., additional, Mora, K., additional, Pöhlker, M., additional, Reichstein, M., additional, Rüger, N., additional, Sánchez‐Parra, B., additional, Schäfer, M., additional, Stratmann, F., additional, Tesche, M., additional, Wehner, B., additional, Wieneke, S., additional, Winkler, A. J., additional, Wolf, S., additional, Zaehle, S., additional, Zscheischler, J., additional, and Quaas, J., additional
- Published
- 2024
- Full Text
- View/download PDF
3. A belowground perspective on the nexus between biodiversity change, climate change, and human well-being
- Author
-
Eisenhauer, N., Frank, Karin, Weigelt, A., Bartkowski, Bartosz, Beugnon, R., Liebal, K., Mahecha, M., Quaas, M., Al-Halbouni, D., Bastos, A., Bohn, Friedrich, de Brito, Mariana Madruga, Denzler, J., Feilhauer, H., Fischer, R., Fritsche, I., Guimaraes-Steinicke, C., Hänsel, M., Haun, D.B.M., Herrmann, H., Huth, Andreas, Kalesse-Los, H., Koetter, M., Kolleck, N., Krause, M., Kretschmer, M., Leitão, P.J., Masson, T., Mora, K., Müller, Birgit, Peng, Jian, Pöhlker, M.L., Ratzke, L., Reichstein, M., Richter, S., Rüger, N., Sánchez-Parra, B., Shadaydeh, M., Sippel, S., Tegen, I., Thrän, Daniela, Umlauft, J., Wendisch, M., Wolf, K., Wirth, C., Zacher, H., Zaehle, S., Quaas, J., Eisenhauer, N., Frank, Karin, Weigelt, A., Bartkowski, Bartosz, Beugnon, R., Liebal, K., Mahecha, M., Quaas, M., Al-Halbouni, D., Bastos, A., Bohn, Friedrich, de Brito, Mariana Madruga, Denzler, J., Feilhauer, H., Fischer, R., Fritsche, I., Guimaraes-Steinicke, C., Hänsel, M., Haun, D.B.M., Herrmann, H., Huth, Andreas, Kalesse-Los, H., Koetter, M., Kolleck, N., Krause, M., Kretschmer, M., Leitão, P.J., Masson, T., Mora, K., Müller, Birgit, Peng, Jian, Pöhlker, M.L., Ratzke, L., Reichstein, M., Richter, S., Rüger, N., Sánchez-Parra, B., Shadaydeh, M., Sippel, S., Tegen, I., Thrän, Daniela, Umlauft, J., Wendisch, M., Wolf, K., Wirth, C., Zacher, H., Zaehle, S., and Quaas, J.
- Abstract
Soil is central to the complex interplay among biodiversity, climate, and society. This paper examines the interconnectedness of soil biodiversity, climate change, and societal impacts, emphasizing the urgent need for integrated solutions. Human-induced biodiversity loss and climate change intensify environmental degradation, threatening human well-being. Soils, rich in biodiversity and vital for ecosystem function regulation, are highly vulnerable to these pressures, affecting nutrient cycling, soil fertility, and resilience. Soil also crucially regulates climate, influencing energy, water cycles, and carbon storage. Yet, climate change poses significant challenges to soil health and carbon dynamics, amplifying global warming. Integrated approaches are essential, including sustainable land management, policy interventions, technological innovations, and societal engagement. Practices like agroforestry and organic farming improve soil health and mitigate climate impacts. Effective policies and governance are crucial for promoting sustainable practices and soil conservation. Recent technologies aid in monitoring soil biodiversity and implementing sustainable land management. Societal engagement, through education and collective action, is vital for environmental stewardship. By prioritizing interdisciplinary research and addressing key frontiers, scientists can advance understanding of the soil biodiversity–climate change–society nexus, informing strategies for environmental sustainability and social equity.
- Published
- 2024
4. Biodiversity and climate extremes: known interactions and research gaps
- Author
-
Mahecha, Miguel Dario, Bastos, A., Bohn, Friedrich, Eisenhauer, N., Feilhauer, Hannes, Hickler, T., Kalesse-Los, H., Migliavacca, M., Otto, F.E.L., Peng, Jian, Sippel, S., Tegen, I., Weigelt, A., Wendisch, M., Wirth, C., Al-Halbouni, D., Deneke, H.M., Doktor, Daniel, Dunker, Susanne, Duveiller, G., Ehrlich, A., Foth, A., García-García, Almudena, Guerra, C.A., Guimarães- Steinicke, C., Hartmann, H., Henning, S., Herrmann, H., Hu, P., Ji, C., Kattenborn, T., Kolleck, N., Kretschmer, M., Kühn, Ingolf, Luttkus, M.L., Maahn, M., Mönks, M., Mora, K., Pöhlker, M., Reichstein, M., Rüger, N., Sánchez-Parra, B., Schäfer, M., Stratmann, F., Tesche, M., Wehner, B., Wieneke, S., Winkler, A.J., Wolf, S., Zaehle, S., Zscheischler, Jakob, Quaas, J., Mahecha, Miguel Dario, Bastos, A., Bohn, Friedrich, Eisenhauer, N., Feilhauer, Hannes, Hickler, T., Kalesse-Los, H., Migliavacca, M., Otto, F.E.L., Peng, Jian, Sippel, S., Tegen, I., Weigelt, A., Wendisch, M., Wirth, C., Al-Halbouni, D., Deneke, H.M., Doktor, Daniel, Dunker, Susanne, Duveiller, G., Ehrlich, A., Foth, A., García-García, Almudena, Guerra, C.A., Guimarães- Steinicke, C., Hartmann, H., Henning, S., Herrmann, H., Hu, P., Ji, C., Kattenborn, T., Kolleck, N., Kretschmer, M., Kühn, Ingolf, Luttkus, M.L., Maahn, M., Mönks, M., Mora, K., Pöhlker, M., Reichstein, M., Rüger, N., Sánchez-Parra, B., Schäfer, M., Stratmann, F., Tesche, M., Wehner, B., Wieneke, S., Winkler, A.J., Wolf, S., Zaehle, S., Zscheischler, Jakob, and Quaas, J.
- Abstract
Climate extremes are on the rise. Impacts of extreme climate and weather events on ecosystem services and ultimately human well-being can be partially attenuated by the organismic, structural, and functional diversity of the affected land surface. However, the ongoing transformation of terrestrial ecosystems through intensified exploitation and management may put this buffering capacity at risk. Here, we summarise the evidence that reductions in biodiversity can destabilise the functioning of ecosystems facing climate extremes. We then explore if impaired ecosystem functioning could, in turn, exacerbate climate extremes. We argue that only a comprehensive approach, incorporating both ecological and hydrometeorological perspectives, enables to understand and predict the entire feedback system between altered biodiversity and climate extremes. This ambition, however, requires a reformulation of current research priorities to emphasise the bidirectional effects that link ecology and atmospheric processes.
- Published
- 2024
5. THE SAHARAN AEROSOL LONG-RANGE TRANSPORT AND AEROSOL–CLOUD-INTERACTION EXPERIMENT : Overview and Selected Highlights
- Author
-
Weinzierl, Bernadett, Ansmann, A., Prospero, J. M., Althausen, D., Benker, N., Chouza, F., Dollner, M., Farrell, D., Fomba, W. K., Freudenthaler, V., Gasteiger, J., Groß, S., Haarig, M., Heinold, B., Kandler, K., Kristensen, T. B., Mayol-Bracero, O. L., Müller, T., Reitebuch, O., Sauer, D., Schäfler, A., Schepanski, K., Spanu, A., Tegen, I., Toledano, C., and Walser, A.
- Published
- 2017
6. SUPPLEMENT : THE SAHARAN AEROSOL LONG-RANGE TRANSPORT AND AEROSOL–CLOUD-INTERACTION EXPERIMENT Overview and Selected Highlights
- Author
-
Weinzierl, Bernadett, Ansmann, A., Prospero, J. M., Althausen, D., Benker, N., Chouza, F., Dollner, M., Farrell, D., Fomba, W. K., Freudenthaler, V., Gasteiger, J., Groß, S., Haarig, M., Heinold, B., Kandler, K., Kristensen, T. B., Mayol-Bracero, O. L., Müller, T., Reitebuch, O., Sauer, D., Schäfler, A., Schepanski, K., Spanu, A., Tegen, I., Toledano, C., and Walser, A.
- Published
- 2017
7. Atmospheric and Surface Processes, and Feedback Mechanisms Determining Arctic Amplification: A Review of First Results and Prospects of the (AC)3 Project
- Author
-
Wendisch, M., Brückner, M., Crewell, Susanne, Ehrlich, A., Notholt, J., Lüpkes, C., Macke, A., Burrows, J. P., Rinke, A., Quaas, J., Maturilli, M., Schemann, V., Shupe, M. D., Akansu, E. F., Barrientos-Velasco, C., Bärfuss, K., Blechschmidt, A.-M., Block, K., Bougoudis, I., Bozem, H., Böckmann, C., Bracher, A., Bresson, H., Bretschneider, L., Buschmann, M., Chechin, D. G., Chylik, J., Dahlke, S., Deneke, H., Dethloff, K., Donth, T., Dorn, W., Dupuy, R., Ebell, K., Egerer, U., Engelmann, R., Eppers, O., Gerdes, R., Gierens, R., Gorodetskaya, I. V., Gottschalk, M., Griesche, H., Gryanik, V. M., Handorf, D., Harm-Altstädter, B., Hartmann, J., Hartmann, M., Heinold, B., Herber, A., Herrmann, H., Heygster, G., Höschel, I., Hofmann, Z., Hölemann, J., Hünerbein, A., Jafariserajehlou, S., Jäkel, E., Jacobi, C., Janout, M., Jansen, F., Jourdan, O., Jurányi, Z., Kalesse-Los, H., Kanzow, T., Käthner, R., Kliesch, L. L., Klingebiel, M., Knudsen, E. M., Kovács, T., Körtke, W., Krampe, D., Kretzschmar, J., Kreyling, D., Kulla, B., Kunkel, D., Lampert, A., Lauer, M., Lelli, L., von Lerber, A., Linke, O., Löhnert, U., Lonardi, M., Losa, S. N., Losch, M., Maahn, M., Mech, M., Mei, L., Mertes, S., Metzner, E., Mewes, D., Michaelis, J., Mioche, G., Moser, Manuel, Nakoudi, K., Neggers, R., Neuber, R., Nomokonova, T., Oelker, J., Papakonstantinou-Presvelou, I., Pätzold, F., Pefanis, V., Pohl, C., van Pinxteren, M., Radovan, A., Rhein, M., Rex, Markus, Richter, A., Risse, N., Ritter, C., Rostosky, P., Rozanov, V. V., Ruiz Donoso, E., Saavedra-Garfias, P., Salzmann, M., Schacht, J., Schäfer, M., Schneider, J., Schnierstein, N., Seifert, P., Seo, S., Siebert, H., Soppa, M. A., Spreen, G., Stachlewska, I. S., Stapf, J., Stratmann, F., Tegen, I., Viceto, C., Voigt, Christiane, Vountas, M., Walbröl, A., Walter, M., Wehner, B., Wex, H., Willmes, S., Zanatta, M., Zeppenfeld, S., Laboratoire de Météorologie Physique (LaMP), and Institut national des sciences de l'Univers (INSU - CNRS)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Atmospheric Science ,[SDU]Sciences of the Universe [physics] ,clouds ,Arctic amplification - Abstract
Mechanisms behind the phenomenon of Arctic amplification are widely discussed. To contribute to this debate, the (AC)3 project was established in 2016 (www.ac3-tr.de/). It comprises modeling and data analysis efforts as well as observational elements. The project has assembled a wealth of ground-based, airborne, shipborne, and satellite data of physical, chemical, and meteorological properties of the Arctic atmosphere, cryosphere, and upper ocean that are available for the Arctic climate research community. Short-term changes and indications of long-term trends in Arctic climate parameters have been detected using existing and new data. For example, a distinct atmospheric moistening, an increase of regional storm activities, an amplified winter warming in the Svalbard and North Pole regions, and a decrease of sea ice thickness in the Fram Strait and of snow depth on sea ice have been identified. A positive trend of tropospheric bromine monoxide (BrO) column densities during polar spring was verified. Local marine/biogenic sources for cloud condensation nuclei and ice nucleating particles were found. Atmospheric–ocean and radiative transfer models were advanced by applying new parameterizations of surface albedo, cloud droplet activation, convective plumes and related processes over leads, and turbulent transfer coefficients for stable surface layers. Four modes of the surface radiative energy budget were explored and reproduced by simulations. To advance the future synthesis of the results, cross-cutting activities are being developed aiming to answer key questions in four focus areas: lapse rate feedback, surface processes, Arctic mixed-phase clouds, and airmass transport and transformation.
- Published
- 2023
- Full Text
- View/download PDF
8. Atmospheric and Surface Processes, and Feedback Mechanisms Determining Arctic Amplification: A Review of First Results and Prospects of the (AC)3 Project
- Author
-
Wendisch, M, Brückner, M, Crewell, S, Ehrlich, A, Notholt, J, Lüpkes, C, Macke, A, Burrows, JP, Rinke, A, Quaas, J, Maturilli, M, Schemann, V, Shupe, MD, Akansu, EF, Barrientos-Velasco, C, Bärfuss, K, Blechschmidt, A-M, Block, K, Bougoudis, I, Bozem, H, Böckmann, C, Bracher, A, Bresson, H, Bretschneider, L, Buschmann, M, Chechin, DG, Chylik, J, Dahlke, S, Deneke, H, Dethloff, K, Donth, T, Dorn, W, Dupuy, R, Ebell, K, Egerer, U, Engelmann, R, Eppers, O, Gerdes, R, Gierens, R, Gorodetskaya, IV, Gottschalk, M, Griesche, H, Gryanik, VM, Handorf, D, Harm-Altstädter, B, Hartmann, J, Hartmann, M, Heinold, B, Herber, A, Herrmann, H, Heygster, G, Höschel, I, Hofmann, Z, Hölemann, J, Hünerbein, A, Jafariserajehlou, S, Jäkel, E, Jacobi, C, Janout, M, Jansen, F, Jourdan, O, Jurányi, Z, Kalesse-Los, H, Kanzow, T, Käthner, R, Kliesch, LL, Klingebiel, M, Knudsen, EM, Kovács, T, Körtke, W, Krampe, D, Kretzschmar, J, Kreyling, D, Kulla, B, Kunkel, D, Lampert, A, Lauer, M, Lelli, L, von Lerber, A, Linke, O, Löhnert, U, Lonardi, M, Losa, SN, Losch, M, Maahn, M, Mech, M, Mei, L, Mertes, S, Metzner, E, Mewes, D, Michaelis, J, Mioche, G, Moser, M, Nakoudi, K, Neggers, R, Neuber, R, Nomokonova, T, Oelker, J, Papakonstantinou-Presvelou, I, Pätzold, F, Pefanis, V, Pohl, C, van Pinxteren, M, Radovan, A, Rhein, M, Rex, M, Richter, A, Risse, N, Ritter, C, Rostosky, P, Rozanov, VV, Donoso, E Ruiz, Saavedra Garfias, P, Salzmann, M, Schacht, J, Schäfer, M, Schneider, J, Schnierstein, N, Seifert, P, Seo, S, Siebert, H, Soppa, MA, Spreen, G, Stachlewska, IS, Stapf, J, Stratmann, F, Tegen, I, Viceto, C, Voigt, C, Vountas, M, Walbröl, A, Walter, M, Wehner, B, Wex, H, Willmes, S, Zanatta, M, Zeppenfeld, S, Wendisch, M, Brückner, M, Crewell, S, Ehrlich, A, Notholt, J, Lüpkes, C, Macke, A, Burrows, JP, Rinke, A, Quaas, J, Maturilli, M, Schemann, V, Shupe, MD, Akansu, EF, Barrientos-Velasco, C, Bärfuss, K, Blechschmidt, A-M, Block, K, Bougoudis, I, Bozem, H, Böckmann, C, Bracher, A, Bresson, H, Bretschneider, L, Buschmann, M, Chechin, DG, Chylik, J, Dahlke, S, Deneke, H, Dethloff, K, Donth, T, Dorn, W, Dupuy, R, Ebell, K, Egerer, U, Engelmann, R, Eppers, O, Gerdes, R, Gierens, R, Gorodetskaya, IV, Gottschalk, M, Griesche, H, Gryanik, VM, Handorf, D, Harm-Altstädter, B, Hartmann, J, Hartmann, M, Heinold, B, Herber, A, Herrmann, H, Heygster, G, Höschel, I, Hofmann, Z, Hölemann, J, Hünerbein, A, Jafariserajehlou, S, Jäkel, E, Jacobi, C, Janout, M, Jansen, F, Jourdan, O, Jurányi, Z, Kalesse-Los, H, Kanzow, T, Käthner, R, Kliesch, LL, Klingebiel, M, Knudsen, EM, Kovács, T, Körtke, W, Krampe, D, Kretzschmar, J, Kreyling, D, Kulla, B, Kunkel, D, Lampert, A, Lauer, M, Lelli, L, von Lerber, A, Linke, O, Löhnert, U, Lonardi, M, Losa, SN, Losch, M, Maahn, M, Mech, M, Mei, L, Mertes, S, Metzner, E, Mewes, D, Michaelis, J, Mioche, G, Moser, M, Nakoudi, K, Neggers, R, Neuber, R, Nomokonova, T, Oelker, J, Papakonstantinou-Presvelou, I, Pätzold, F, Pefanis, V, Pohl, C, van Pinxteren, M, Radovan, A, Rhein, M, Rex, M, Richter, A, Risse, N, Ritter, C, Rostosky, P, Rozanov, VV, Donoso, E Ruiz, Saavedra Garfias, P, Salzmann, M, Schacht, J, Schäfer, M, Schneider, J, Schnierstein, N, Seifert, P, Seo, S, Siebert, H, Soppa, MA, Spreen, G, Stachlewska, IS, Stapf, J, Stratmann, F, Tegen, I, Viceto, C, Voigt, C, Vountas, M, Walbröl, A, Walter, M, Wehner, B, Wex, H, Willmes, S, Zanatta, M, and Zeppenfeld, S
- Abstract
Mechanisms behind the phenomenon of Arctic amplification are widely discussed. To contribute to this debate, the (AC)3 project was established in 2016 (www.ac3-tr.de/). It comprises modeling and data analysis efforts as well as observational elements. The project has assembled a wealth of ground-based, airborne, shipborne, and satellite data of physical, chemical, and meteorological properties of the Arctic atmosphere, cryosphere, and upper ocean that are available for the Arctic climate research community. Short-term changes and indications of long-term trends in Arctic climate parameters have been detected using existing and new data. For example, a distinct atmospheric moistening, an increase of regional storm activities, an amplified winter warming in the Svalbard and North Pole regions, and a decrease of sea ice thickness in the Fram Strait and of snow depth on sea ice have been identified. A positive trend of tropospheric bromine monoxide (BrO) column densities during polar spring was verified. Local marine/biogenic sources for cloud condensation nuclei and ice nucleating particles were found. Atmospheric–ocean and radiative transfer models were advanced by applying new parameterizations of surface albedo, cloud droplet activation, convective plumes and related processes over leads, and turbulent transfer coefficients for stable surface layers. Four modes of the surface radiative energy budget were explored and reproduced by simulations. To advance the future synthesis of the results, cross-cutting activities are being developed aiming to answer key questions in four focus areas: lapse rate feedback, surface processes, Arctic mixed-phase clouds, and airmass transport and transformation.
- Published
- 2023
9. The global atmosphere-aerosol model ICON-A-HAM2.3-Initial model evaluation and effects of radiation balance tuning on aerosol optical thickness
- Author
-
Salzmann, M., Ferrachat, S., Tully, C., Münch, S., Watson‐Parris, D., Neubauer, D., Siegenthaler‐Le Drian, C., Rast, S., Heinold, B., Crueger, T., Brokopf, R., Mülmenstädt, J., Quaas, J., Wan, H., Zhang, K., Lohmann, U., Stier, P., and Tegen, I.
- Subjects
Global and Planetary Change ,aerosol ,modeling ,General Earth and Planetary Sciences ,Environmental Chemistry - Abstract
The Hamburg Aerosol Module version 2.3 (HAM2.3) from the ECHAM6.3-HAM2.3 global atmosphere-aerosol model is coupled to the recently developed icosahedral nonhydrostatic ICON-A (icon-aes-1.3.00) global atmosphere model to yield the new ICON-A-HAM2.3 atmosphere-aerosol model. The ICON-A and ECHAM6.3 host models use different dynamical cores, parameterizations of vertical mixing due to sub-grid scale turbulence, and parameter settings for radiation balance tuning. Here, we study the role of the different host models for simulated aerosol optical thickness (AOT) and evaluate impacts of using HAM2.3 and the ECHAM6-HAM2.3 two-moment cloud microphysics scheme on several meteorological variables. Sensitivity runs show that a positive AOT bias over the subtropical oceans is remedied in ICON-A-HAM2.3 because of a different default setting of a parameter in the moist convection parameterization of the host models. The global mean AOT is biased low compared to MODIS satellite instrument retrievals in ICON-A-HAM2.3 and ECHAM6.3-HAM2.3, but the bias is larger in ICON-A-HAM2.3 because negative AOT biases over the Amazon, the African rain forest, and the northern Indian Ocean are no longer compensated by high biases over the sub-tropical oceans. ICON-A-HAM2.3 shows a moderate improvement with respect to AOT observations at AERONET sites. A multivariable bias score combining biases of several meteorological variables into a single number is larger in ICON-A-HAM2.3 compared to standard ICON-A and standard ECHAM6.3. In the tropics, this multivariable bias is of similar magnitude in ICON-A-HAM2.3 and in ECHAM6.3-HAM2.3. In the extra-tropics, a smaller multivariable bias is found for ICON-A-HAM2.3 than for ECHAM6.3-HAM2.3., Journal of Advances in Modeling Earth Systems, 14 (4), ISSN:1942-2466
- Published
- 2022
10. Biodiversity loss and climate extremes — study the feedbacks
- Author
-
Mahecha, Miguel Dario, Bastos, A., Bohn, Friedrich, Eisenhauer, N., Feilhauer, Hannes, Hartmann, H., Hickler, T., Kalesse-Los, H., Migliavacca, M., Otto, F.E.L., Peng, Jian, Quaas, J., Tegen, I., Weigelt, A., Wendisch, M., Wirth, C., Mahecha, Miguel Dario, Bastos, A., Bohn, Friedrich, Eisenhauer, N., Feilhauer, Hannes, Hartmann, H., Hickler, T., Kalesse-Los, H., Migliavacca, M., Otto, F.E.L., Peng, Jian, Quaas, J., Tegen, I., Weigelt, A., Wendisch, M., and Wirth, C.
- Abstract
no abstract
- Published
- 2022
11. Absorbing aerosol decreases cloud cover in cloud‐resolving simulations over Germany
- Author
-
Senf, F., primary, Quaas, J., additional, and Tegen, I., additional
- Published
- 2021
- Full Text
- View/download PDF
12. The aerosol-climate model ECHAM6.3-HAM2.3 - Part 1: Aerosol evaluation
- Author
-
Tegen, I., Neubauer, D., Ferrachat, S., Siegenthaler-Le Drian, C., Bey, I., Schutgens, N., Stier, P., Watson-Parris, D., Stanelle, T., Schmidt, H., https://orcid.org/0000-0001-7977-5041, Rast, S., Kokkola, H., Schultz, M., Schroeder, S., Daskalakis, N., Barthel, S., Heinold, B., and Lohmann, U.
- Subjects
respiratory system ,complex mixtures - Abstract
We introduce and evaluate the aerosol simulations with the global aerosol-climate model ECHAM6.3-HAM2.3, which is the aerosol component of the fully coupled aerosol-chemistry-climate model ECHAM-HAMMOZ. Both the host atmospheric climate model ECHAM6.3 and the aerosol model HAM2.3 were updated from previous versions. The updated version of the HAM aerosol model contains improved parameterizations of aerosol processes such as cloud activation, as well as updated emission fields for anthropogenic aerosol species and modifications in the online computation of sea salt and mineral dust aerosol emissions. Aerosol results from nudged and free running simulations for the 10-year period 2003 to 2012 are compared to various measurements of aerosol properties. While there are regional deviations between model and observations, the model performs well overall in terms of aerosol optical thickness, but may underestimate coarse mode aerosol concentrations to some extent, so that the modeled particles are smaller than indicated by the observations. Sulfate aerosol measurements in the US and Europe are reproduced well by the model, while carbonaceous aerosol species are biased low. Both mineral dust and sea salt aerosol concentrations are improved compared to previous versions of ECHAM-HAM. The evaluation of the simulated aerosol distributions serves as a basis for the suitability of the model for simulating aerosol-climate interactions in a changing climate.
- Published
- 2019
13. Natural sea-salt emissions moderate the climate forcing of anthropogenic nitrate
- Author
-
Chen, Y., Cheng, Y., Ma, N., Wei, C., Ran, L., Wolke, R., Größ, J., Wang, Q., Pozzer, A., Van Der Gon, H.A.C.D., Spindler, G., Lelieveld, J., Tegen, I., Su, H., Wiedensohler, A., Chen, Y., Cheng, Y., Ma, N., Wei, C., Ran, L., Wolke, R., Größ, J., Wang, Q., Pozzer, A., Van Der Gon, H.A.C.D., Spindler, G., Lelieveld, J., Tegen, I., Su, H., and Wiedensohler, A.
- Abstract
Natural sea-salt aerosols, when interacting with anthropogenic emissions, can enhance the formation of particulate nitrate. This enhancement has been suggested to increase the direct radiative forcing of nitrate, called the “mass-enhancement effect”. Through a size-resolved dynamic mass transfer modeling approach, we show that interactions with sea salt shift the nitrate from sub- to super-micron-sized particles (“redistribution effect”), and hence this lowers its efficiency for light extinction and reduces its lifetime. The redistribution effect overwhelms the mass-enhancement effect and significantly moderates nitrate cooling; e.g., the nitrate-associated aerosol optical depth can be reduced by 10 %–20 % over European polluted regions during a typical sea-salt event, in contrast to an increase by ∼10 % when only accounting for the mass-enhancement effect. Global model simulations indicate significant redistribution over coastal and offshore regions worldwide. Our study suggests a strong buffering by natural sea-salt aerosols that reduces the climate forcing of anthropogenic nitrate, which had been expected to dominate the aerosol cooling by the end of the century. Comprehensive considerations of this redistribution effect foster better understandings of climate change and nitrogen deposition.
- Published
- 2020
14. Variability of cosmogenic 35S in rain—Resulting implications for the use of radiosulfur as natural groundwater residence timet tracer
- Author
-
Schubert, Michael, Knöller, Kay, Tegen, I., Terzi, L., Schubert, Michael, Knöller, Kay, Tegen, I., and Terzi, L.
- Abstract
Information about groundwater residence times is essential for sustainable groundwater management. Naturally occurring radionuclides are suitable tools for related investigations. While the applicability of several long-lived radionuclides has been demonstrated for the investigation of long residence times (i.e., years, decades, centuries and more), studies that focus on sub-yearly residence times are only scarcely discussed in the literature. This shortage is mainly due to the rather small number of radionuclides that are generally suitable for the purpose and show at the same time adequately short half-lives. A promising innovative approach in this regard applies cosmogenic radiosulfur (35S). 35S is continuously produced in the stratosphere from where it is conveyed to the troposphere or lower atmosphere and finally transferred with the rain to the groundwater. As soon as the meteoric water enters the subsurface, its 35S activity decreases with an 87.4 day half-life, making 35S a suitable time tracer for investigating sub-yearly groundwater ages. However, since precipitation shows a varying 35S activity during the year, setting up a reliable 35S input function is required for sound data evaluation. That calls for (i) an investigation of the long-term variation of the 35S activity in the rain, (ii) the identification of the associated drivers and (iii) an approach for setting up a 35S input function based on easily attainable proxies. The paper discusses 35S activities in the rain recorded over a 12-month period, identifies natural and anthropogenic influences, and suggests an approach for setting up a 35S input function applying 7Be as a proxy.
- Published
- 2020
15. Climate and air quality impacts due to mitigation of non-methane near-term climate forcers
- Author
-
Allen, R.J., Turnock, S., Nabat, P., Neubauer, D., Lohmann, U., Olivié, D., Oshima, N., Michou, M., Wu, T., Zhang, J., Takemura, T., Schulz, M., Tsigaridis, K., Bauer, S.E., Emmons, L., Horowitz, L., Naik, V., van Noije, T., Bergman, T., Lamarque, J.-F., Zanis, P., Tegen, I., Westervelt, D.M., Le Sager, P., Good, P., Shim, S., O'Connor, F., Akritidis, D., Georgoulias, A.K., Deushi, M., Sentman, L.T., John, J.G., Fujimori, S., Collins, W.J., Allen, R.J., Turnock, S., Nabat, P., Neubauer, D., Lohmann, U., Olivié, D., Oshima, N., Michou, M., Wu, T., Zhang, J., Takemura, T., Schulz, M., Tsigaridis, K., Bauer, S.E., Emmons, L., Horowitz, L., Naik, V., van Noije, T., Bergman, T., Lamarque, J.-F., Zanis, P., Tegen, I., Westervelt, D.M., Le Sager, P., Good, P., Shim, S., O'Connor, F., Akritidis, D., Georgoulias, A.K., Deushi, M., Sentman, L.T., John, J.G., Fujimori, S., and Collins, W.J.
- Abstract
It is important to understand how future environmental policies will impact both climate change and air pollution. Although targeting near-term climate forcers (NTCFs), defined here as aerosols, tropospheric ozone, and precursor gases, should improve air quality, NTCF reductions will also impact climate. Prior assessments of the impact of NTCF mitigation on air quality and climate have been limited. This is related to the idealized nature of some prior studies, simplified treatment of aerosols and chemically reactive gases, as well as a lack of a sufficiently large number of models to quantify model diversity and robust responses. Here, we quantify the 2015–2055 climate and air quality effects of non-methane NTCFs using nine state-of-the-art chemistry–climate model simulations conducted for the Aerosol and Chemistry Model Intercomparison Project (AerChemMIP). Simulations are driven by two future scenarios featuring similar increases in greenhouse gases (GHGs) but with “weak” (SSP3-7.0) versus “strong” (SSP3-7.0-lowNTCF) levels of air quality control measures. As SSP3-7.0 lacks climate policy and has the highest levels of NTCFs, our results (e.g., surface warming) represent an upper bound. Unsurprisingly, we find significant improvements in air quality under NTCF mitigation (strong versus weak air quality controls). Surface fine particulate matter (PM2.5) and ozone (O3) decrease by −2.2±0.32 µg m−3 and −4.6±0.88 ppb, respectively (changes quoted here are for the entire 2015–2055 time period; uncertainty represents the 95 % confidence interval), over global land surfaces, with larger reductions in some regions including south and southeast Asia. Non-methane NTCF mitigation, however, leads to additional climate change due to the removal of aerosol which causes a net warming effect, including global mean surface temperature and precipitation increases of 0.25±0.12 K and 0.03±0.012 mm d−1, respectively. Similarly, increases in extreme weather indices, including the hotte
- Published
- 2020
16. Global relevance of marine organic aerosol as ice nucleating particles
- Author
-
Ting Katty Huang W., Ickes L., Tegen I., Rinaldi M., Ceburnis D., and Lohmann U.
- Subjects
SEA-SPRAY AEROSOL ,MIXED-PHASE CLOUDS ,PHYTOPLANKTON BIOMASS ,NUCLEI ,SENSITIVITY ,MATTER ,DUST ,PARAMETERIZATION ,IMPROVEMENTS ,ACTIVATION - Abstract
Ice nucleating particles (INPs) increase the temperature at which supercooled droplets start to freeze. They are therefore of particular interest in mixed-phase cloud temperature regimes, where supercooled liquid droplets can persist for extended periods of time in the absence of INPs. When INPs are introduced to such an environment, the cloud can quickly glaciate following ice multiplication processes and the Wegener-Bergeron-Findeisen (WBF) process. The WBF process can also cause the ice to grow to precipitation size and precipitate out. All of these processes alter the radiative properties.Despite their potential influence on climate, the ice nucleation ability and importance of different aerosol species is still not well understood and is a field of active research. In this study, we use the aerosol-climate model ECHAM6-HAM2 to examine the global relevance of marine organic aerosol (MOA), which has drawn much interest in recent years as a potentially important INPs in remote marine regions. We address the uncertainties in emissions and ice nucleation activity of MOA with a range of reasonable set-ups and find a wide range of resulting MOA burdens. The relative importance of MOA as an INP compared to dust is investigated and found to depend strongly on the type of ice nucleation parameterisation scheme chosen. On the zonal mean, freezing due to MOA leads to relative increases in the cloud ice occurrence and in-cloud number concentration close to the surface in the polar regions during summer. Slight but consistent decreases in the in-cloud ice crystal effective radius can also be observed over the same regions during all seasons. Regardless, MOA was not found to affect the radiative balance significantly on the global scale, due to its relatively weak ice activity and a low sensitivity of cloud ice properties to heterogeneous ice nucleation in our model..
- Published
- 2018
- Full Text
- View/download PDF
17. A parameterization of the heterogeneous hydrolysis of N2O5 break for mass-based aerosol models:improvement of break particulate nitrate prediction
- Author
-
Chen, Ying, Wolke, R., Ran, L., Birmili, W., Spindler, G., Schröder, W., Su, H., Cheng, Y., Tegen, I., Wiedensohler, A., Chen, Ying, Wolke, R., Ran, L., Birmili, W., Spindler, G., Schröder, W., Su, H., Cheng, Y., Tegen, I., and Wiedensohler, A.
- Abstract
The heterogeneous hydrolysis of N2O5 on the surface of deliquescent aerosol leads to HNO3 formation and acts as a major sink of NOx in the atmosphere during night-time. The reaction constant of this heterogeneous hydrolysis is determined by temperature (T), relative humidity (RH), aerosol particle composition, and the surface area concentration (S). However, these parameters were not comprehensively considered in the parameterization of the heterogeneous hydrolysis of N2O5 in previous mass-based 3-D aerosol modelling studies. In this investigation, we propose a sophisticated parameterization (NewN2O5) of N2O5 heterogeneous hydrolysis with respect to T, RH, aerosol particle compositions, and S based on laboratory experiments. We evaluated closure between NewN2O5 and a state-of-the-art parameterization based on a sectional aerosol treatment. The comparison showed a good linear relationship (R = 0.91) between these two parameterizations. NewN2O5 was incorporated into a 3-D fully online coupled model, COSMO–MUSCAT, with the mass-based aerosol treatment. As a case study, we used the data from the HOPE Melpitz campaign (10–25 September 2013) to validate model performance. Here, we investigated the improvement of nitrate prediction over western and central Europe. The modelled particulate nitrate mass concentrations ([NO3−]) were validated by filter measurements over Germany (Neuglobsow, Schmücke, Zingst, and Melpitz). The modelled [NO3−] was significantly overestimated for this period by a factor of 5–19, with the corrected NH3 emissions (reduced by 50 %) and the original parameterization of N2O5 heterogeneous hydrolysis. The NewN2O5 significantly reduces the overestimation of [NO3−] by ∼ 35 %. Particularly, the overestimation factor was reduced to approximately 1.4 in our case study (12, 17–18 and 25 September 2013) when [NO3−] was dominated by local chemical formations. In our case, the suppression of organic coating was negligible over western and central Europe, wi
- Published
- 2018
18. Plans for a HALO campaign within (AC)3
- Author
-
Wendisch, M., Brückner, Marlen, Crewell, S., Notholt, Justus, Burrows, J. P., Dethloff, Klaus, Ebell, K., Ehrlich, André, Lüpkes, Christof, Macke, Andreas, Quaas, J., Rinke, Annette, Tegen, I., Neggers, Roel, Herber, Andreas, Rex, Markus, Wendisch, M., Brückner, Marlen, Crewell, S., Notholt, Justus, Burrows, J. P., Dethloff, Klaus, Ebell, K., Ehrlich, André, Lüpkes, Christof, Macke, Andreas, Quaas, J., Rinke, Annette, Tegen, I., Neggers, Roel, Herber, Andreas, and Rex, Markus
- Published
- 2017
19. Plans for a HALO campaign within (AC)³
- Author
-
Wendisch, Manfred, Brückner, Marlen, Crewell, S., Notholt, Justus, Burrows, J. P., Dethloff, Klaus, Ebell, K., Ehrlich, André, Lüpkes, Christof, Macke, Andreas, Quaas, J., Rinke, Annette, Tegen, I., Neggers, Roel, Herber, Andreas, Rex, Markus, Wendisch, Manfred, Brückner, Marlen, Crewell, S., Notholt, Justus, Burrows, J. P., Dethloff, Klaus, Ebell, K., Ehrlich, André, Lüpkes, Christof, Macke, Andreas, Quaas, J., Rinke, Annette, Tegen, I., Neggers, Roel, Herber, Andreas, and Rex, Markus
- Published
- 2017
20. Understanding Causes and Effects of Rapid Warming in the Arctic
- Author
-
Wendisch, Manfred, Brückner, Marlen, Burrows, J. P., Crewell, S., Dethloff, Klaus, Ebell, K., Lüpkes, Christof, Macke, Andreas, Notholt, Justus, Quaas, J., Rinke, Annette, Tegen, I., Wendisch, Manfred, Brückner, Marlen, Burrows, J. P., Crewell, S., Dethloff, Klaus, Ebell, K., Lüpkes, Christof, Macke, Andreas, Notholt, Justus, Quaas, J., Rinke, Annette, and Tegen, I.
- Published
- 2017
21. Ice phase in altocumulus clouds over Leipzig: remote sensing observations and detailed modeling
- Author
-
Simmel, M., primary, Bühl, J., additional, Ansmann, A., additional, and Tegen, I., additional
- Published
- 2015
- Full Text
- View/download PDF
22. New developments in the representation of Saharan dust sources in the aerosol-climate model ECHAM6-HAM2
- Author
-
Heinold, B., primary, Tegen, I., additional, Schepanski, K., additional, and Banks, J. R., additional
- Published
- 2015
- Full Text
- View/download PDF
23. Seasonal variability of Saharan desert dust and ice nucleating particles over Europe
- Author
-
Hande, L. B., primary, Engler, C., additional, Hoose, C., additional, and Tegen, I., additional
- Published
- 2015
- Full Text
- View/download PDF
24. New developments in the representation of Saharan dust sources in the aerosol-climate model ECHAM6-HAM2.
- Author
-
Heinold, B., Tegen, I., Schepanski, K., and Banks, J. R.
- Subjects
- *
ATMOSPHERIC aerosols , *DUST , *PARAMETERIZATION , *MATHEMATICAL models - Abstract
In the aerosol-climate model ECHAM6-HAM2, dust source activation (DSA) observations from Meteosat Second Generation (MSG) satellite are proposed to replace the original source area parameterization over the Sahara Desert. The new setup is tested in nudged simulations for the period 2007 to 2008. The evaluation is based on comparisons to dust emission events inferred from MSG dust index imagery, AERONET sun photometer observations, and satellite retrievals of aerosol optical thickness (AOT). The model results agree well with AERONET measurements. Good correlations between model results and MSG-SEVIRI dust AOT as well as Multi-angle Imaging Spectro-Radiometer (MISR) AOT indicate that also the spatial dust distribution is well reproduced. ECHAM6-HAM2 computes a more realistic geographical distribution and up to 20 % higher annual Saharan dust emissions, using the MSG-based source map. The representation of dust AOT is partly improved in the southern Sahara and Sahel. In addition, the spatial variability is increased towards a better agreement with observations depending on the season. Thus, using the MSG DSA map can help to circumvent the issue of uncertain soil input parameters. An important issue remains the need to improve the model representation of moist convection and stable nighttime conditions. Compared to sub-daily DSA information from MSG-SEVIRI and results from a regional model, ECHAM6-HAM2 notably underestimates the important fraction of morning dust events by the breakdown of the nocturnal low-level jet, while a major contribution is from afternoon-to-evening emissions. [ABSTRACT FROM AUTHOR]
- Published
- 2015
- Full Text
- View/download PDF
25. Absorbing aerosol decreases cloud cover in cloud‐resolving simulations over Germany
- Author
-
Fabian Senf, Johannes Quaas, Ina Tegen, Quaas, J., 2 Leipzig Institute for Meteorology Universität Leipzig Leipzig Germany, Tegen, I., and 1 Leibniz Institute for Tropospheric Research Leipzig Germany
- Subjects
Atmospheric radiation ,Atmospheric Science ,business.industry ,Cloud cover ,food and beverages ,Cloud computing ,respiratory system ,Atmospheric sciences ,complex mixtures ,Aerosol ,ddc:551.5 ,Interference (communication) ,Environmental science ,sense organs ,business ,Astrophysics::Galaxy Astrophysics ,Physics::Atmospheric and Oceanic Physics - Abstract
Aerosol can affect clouds in various ways. Beside the microphysical impact of aerosol particles on cloud formation, the interference of aerosol with atmospheric radiation leads to changes in local heating, surface fluxes and thus mesoscale circulations, all of which may also modify clouds. Rather little is known about these so‐called semi‐direct effects in realistic settings – a reason why this study investigates the impact of absorbing aerosol particles on cloud and radiation fields over Germany. Using advanced high‐resolution simulations with grid spacings of 312 and 625 m, numerical experiments with different aerosol optical properties are contrasted using purely scattering aerosol as a control case and realistic absorbing aerosol as a perturbation. The combined effect of surface dimming and atmospheric heating induces positive temperature and negative moisture anomalies between 800 and 900 hPa, impacting low‐level cloud formation. Decreased relative humidity as well as increased atmospheric stability below clouds lead to a reduction of low‐level cloud cover, liquid water path and precipitation. It is further found that direct and semi‐direct effects of absorbing aerosol forcing have similar magnitudes and contribute equally to a reduction of net radiation at the top of the atmosphere., Atmospheric aerosol particles can absorb solar radiation, altering the thermal structure of the atmosphere and surface fluxes. Using advanced high‐resolution simulations over Germany with grid spacings of 312 and 625 m, we find that boundary‐layer absorbing aerosol reduces low‐level cloud cover, liquid water path and precipitation. Direct and semi‐direct effects have similar magnitudes and contribute equally to a positive absorbing aerosol forcing., German Ministry for Education and Research EU Horizon 2020 project CONSTRAIN, https://cera-www.dkrz.de/WDCC/ui/cerasearch/entry?acronym=DKRZ_LTA_1174_ds00001
- Published
- 2021
26. Satellites reveal Earth's seasonally shifting dust emission sources.
- Author
-
Chappell A, Webb NP, Hennen M, Schepanski K, Ciais P, Balkanski Y, Zender CS, Tegen I, Zeng Z, Tong D, Baker B, Ekström M, Baddock M, Eckardt FD, Kandakji T, Lee JA, Nobakht M, von Holdt J, and Leys JF
- Abstract
Establishing mineral dust impacts on Earth's systems requires numerical models of the dust cycle. Differences between dust optical depth (DOD) measurements and modelling the cycle of dust emission, atmospheric transport, and deposition of dust indicate large model uncertainty due partially to unrealistic model assumptions about dust emission frequency. Calibrating dust cycle models to DOD measurements typically in North Africa, are routinely used to reduce dust model magnitude. This calibration forces modelled dust emissions to match atmospheric DOD but may hide the correct magnitude and frequency of dust emission events at source, compensating biases in other modelled processes of the dust cycle. Therefore, it is essential to improve physically based dust emission modules. Here we use a global collation of satellite observations from previous studies of dust emission point source (DPS) dichotomous frequency data. We show that these DPS data have little-to-no relation with MODIS DOD frequency. We calibrate the albedo-based dust emission model using the frequency distribution of those DPS data. The global dust emission uncertainty constrained by DPS data (±3.8 kg m
-2 y-1 ) provides a benchmark for dust emission model development. Our calibrated model results reveal much less global dust emission (29.1 ± 14.9 Tg y-1 ) than previous estimates, and show seasonally shifting dust emission predominance within and between hemispheres, as opposed to a persistent North African dust emission primacy widely interpreted from DOD measurements. Earth's largest dust emissions, proceed seasonally from East Asian deserts in boreal spring, to Middle Eastern and North African deserts in boreal summer and then Australian shrublands in boreal autumn-winter. This new analysis of dust emissions, from global sources of varying geochemical properties, have far-reaching implications for current and future dust-climate effects. For more reliable coupled representation of dust-climate projections, our findings suggest the need to re-evaluate dust cycle modelling and benefit from the albedo-based parameterisation., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 The Author(s). Published by Elsevier B.V. All rights reserved.)- Published
- 2023
- Full Text
- View/download PDF
27. Biodiversity loss and climate extremes - study the feedbacks.
- Author
-
Mahecha MD, Bastos A, Bohn FJ, Eisenhauer N, Feilhauer H, Hartmann H, Hickler T, Kalesse-Los H, Migliavacca M, Otto FEL, Peng J, Quaas J, Tegen I, Weigelt A, Wendisch M, and Wirth C
- Subjects
- Animals, Biodiversity, Climate, Feedback, Climate Change, Extreme Weather
- Published
- 2022
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.