1. α-Tocopherol phosphate as a photosensitizer in the reaction of nucleosides with UV light: formation of 5,6-dihydrothymidine
- Author
-
Toshinori Suzuki and Chiaki Ono
- Subjects
Tocopherol phosphate ,Thymidine ,Photosensitizer ,UV light ,Dihydrothymidine ,Ecology ,QH540-549.5 ,Genetics ,QH426-470 - Abstract
Abstract Introduction α-Tocopherol phosphate, a natural water-soluble α-tocopherol analog, exists in biological tissues and fluids. Synthesized α-tocopherol phosphate is used as an ingredient of cosmetics. Findings When a neutral mixed solution of 2′-deoxycytidine, 2′-deoxyguanosine, thymidine, and 2′-deoxyadenosine was irradiated with UV light at wavelengths longer than 300 nm in the presence of α-tocopherol phosphate, thymidine was markedly consumed in an α-tocopherol phosphate dose-dependent manner, whereas other nucleosides only slightly decreased. Two major product peaks were detected in an HPLC chromatogram. The products were identified as diastereomers of 5,6-dihydrothymidine. The addition of radical scavengers had almost no effects on the generation of 5,6-dihydrothymidine, whereas the reactions of nucleosides other than thymidine were suppressed. Trolox, another water-soluble α-tocopherol analog, did not generate 5,6-dihydrothymidine, although all nucleosides were slightly consumed. When UV irradiation of thymidine with α-tocopherol phosphate was conducted in D2O, two deuterium atoms were added to 5 and 6 positions of thymidine with both syn and anti configurations. The ratio of syn and anti configurations alternated depending on pD of the solution. Conclusions The results indicate that α-tocopherol phosphate is a photosensitizer of nucleosides, especially thymidine, and that it introduces two hydrogen atoms to thymidine from H2O, generating 5,6-dihydrothymidine.
- Published
- 2022
- Full Text
- View/download PDF