1. Thermoelectric performance of a metastable thin-film Heusler alloy.
- Author
-
Hinterleitner B, Knapp I, Poneder M, Shi Y, Müller H, Eguchi G, Eisenmenger-Sittner C, Stöger-Pollach M, Kakefuda Y, Kawamoto N, Guo Q, Baba T, Mori T, Ullah S, Chen XQ, and Bauer E
- Abstract
Thermoelectric materials transform a thermal gradient into electricity. The efficiency of this process relies on three material-dependent parameters: the Seebeck coefficient, the electrical resistivity and the thermal conductivity, summarized in the thermoelectric figure of merit. A large figure of merit is beneficial for potential applications such as thermoelectric generators. Here we report the thermal and electronic properties of thin-film Heusler alloys based on Fe
2 V0.8 W0.2 Al prepared by magnetron sputtering. Density functional theory calculations suggest that the thin films are metastable states, and measurements of the power factor-the ratio of the Seebeck coefficient squared divided by the electrical resistivity-suggest a high intrinsic figure of merit for these thin films. This may arise from a large differential density of states at the Fermi level and a Weyl-like electron dispersion close to the Fermi level, which indicates a high mobility of charge carriers owing to linear crossing in the electronic bands.- Published
- 2019
- Full Text
- View/download PDF