1. Collapse of turbulent massive cores with ambipolar diffusion and hybrid radiative transfer
- Author
-
M. González, Benoît Commerçon, R. Mignon-Risse, AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Centre de Recherche Astrophysique de Lyon (CRAL), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), This work was supported by the CNRS 'Programme National de Physique Stellaire' (PNPS), The numerical simulations we have presented in this paper were produced on the CEA machine Alfvén and using HPC resources from GENCI-CINES (Grant A0080407247). The visualisation of RAMSES data has been done with the OSYRIS python package., Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Bordeaux Sciences Agro [Gradignan], and Ecole Nationale Supérieure des Sciences Agronomiques de Bordeaux-Aquitaine (Bordeaux Sciences Agro)
- Subjects
Magnetohydrodynamics (MHD) ,Astrophysics::High Energy Astrophysical Phenomena ,Stars: formation ,FOS: Physical sciences ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,Stars: protostars ,Acceleration ,0103 physical sciences ,Radiative transfer ,Protostar ,Astrophysics::Solar and Stellar Astrophysics ,Stars: massive ,010303 astronomy & astrophysics ,Solar and Stellar Astrophysics (astro-ph.SR) ,Astrophysics::Galaxy Astrophysics ,Physics ,Methods: numerical ,010308 nuclear & particles physics ,Turbulence ,Ambipolar diffusion ,Velocity dispersion ,Astronomy and Astrophysics ,[PHYS.ASTR.SR]Physics [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR] ,Astrophysics - Astrophysics of Galaxies ,Magnetic field ,[PHYS.ASTR.GA]Physics [physics]/Astrophysics [astro-ph]/Galactic Astrophysics [astro-ph.GA] ,Astrophysics - Solar and Stellar Astrophysics ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,Outflow ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
(Abridged) Most massive protostars exhibit bipolar outflows. Nonetheless, there is no consensus regarding the mechanism at the origin of these outflows, nor on the cause of the less-frequently observed monopolar outflows. We aim to identify the origin of early massive protostellar outflows, focusing on the combined effects of radiative transfer and magnetic fields in a turbulent medium. We use four state-of-the-art radiation-magnetohydrodynamical simulations following the collapse of massive 100 Msun pre-stellar cores with the Ramses code. Turbulence is taken into account via initial velocity dispersion. We use a hybrid radiative transfer method and include ambipolar diffusion. We find that turbulence delays the launching of outflows, which appear to be mainly driven by magnetohydrodynamical processes. Magnetic tower flow and the magneto-centrifugal acceleration contribute to the acceleration and the former operates on larger volumes than the latter. Our finest resolution, 5 AU, does not allow us to get converged results on magneto-centrifugally accelerated outflows. Radiative acceleration takes place as well, dominates in the star vicinity, enlarges the outflow extent, and has no negative impact on the launching of magnetic outflows (up to M~17 Msun, L~1e5 Lsun). The associated opening angles (20-30 deg when magnetic fields dominate) suggest additional (de-)collimating effects to meet observational constraints. Outflows are launched nearly perpendicular to the disk and are misaligned with the initial core-scale magnetic fields, in agreement with several observational studies. In the most turbulent run, the outflow is monopolar. We conclude that magnetic processes dominate the acceleration of massive protostellar outflows up to ~17 Msun, against radiative processes. Turbulence perturbs the outflow launching and is a possible explanation for monopolar outflows., Accepted for publication in A&A, 20 pages, 15 figures
- Published
- 2021
- Full Text
- View/download PDF