12 results on '"Alison Buchan"'
Search Results
2. Correction: Microbiomes and Planctomycete diversity in large-scale aquaria habitats.
- Author
-
Claire E Elbon, Gary R LeCleir, Matthew J Tuttle, Sophie K Jurgensen, Thomas G Demas, Christian J Keller, Tina Stewart, and Alison Buchan
- Subjects
Medicine ,Science - Abstract
[This corrects the article DOI: 10.1371/journal.pone.0267881.].
- Published
- 2024
- Full Text
- View/download PDF
3. Evidence for novel polycyclic aromatic hydrocarbon degradation pathways in culturable marine isolates
- Author
-
Jillian L. Walton and Alison Buchan
- Subjects
co-metabolism ,marine bacteria ,Roseobacteraceae ,PAH degradation ,bioremediation ,Microbiology ,QR1-502 - Abstract
ABSTRACT Polycyclic aromatic hydrocarbons (PAHs) are common toxic and carcinogenic pollutants in marine ecosystems. Despite their prevalence in these habitats, relatively little is known about the natural microflora and biochemical pathways that contribute to their degradation. Approaches to investigate marine microbial PAH degraders often heavily rely on genetic biomarkers, which requires prior knowledge of specific degradative enzymes and genes encoding them. As such, these biomarker-reliant approaches cannot efficiently identify novel degradation pathways or degraders. Here, we screen 18 marine bacterial strains representing the Pseudomonadota, Bacillota, and Bacteroidota phyla for degradation of two model PAHs, pyrene (high molecular weight) and phenanthrene (low molecular weight). Using a qualitative PAH plate screening assay, we determined that 16 of 18 strains show some ability to degrade either or both compounds. Degradative ability was subsequently confirmed with a quantitative high-performance liquid chromatography approach, where an additional strain showed some degradation in liquid culture. Several members of the prominent marine Roseobacteraceae family degraded pyrene and phenanthrene with varying efficiency (1.2%–29.6% and 5.2%–52.2%, respectively) over 26 days. Described PAH genetic biomarkers were absent in all PAH degrading strains for which genome sequences are available, suggesting that these strains harbor novel transformation pathways. These results demonstrate the utility of culture-based approaches in expanding the knowledge landscape concerning PAH degradation in marine systems. IMPORTANCE Polycyclic aromatic hydrocarbon (PAH) pollution is widespread throughout marine environments and significantly affects native flora and fauna. Investigating microbes responsible for degrading PAHs in these environments provides a greater understanding of natural attenuation in these systems. In addition, the use of culture-based approaches to inform bioinformatic and omics-based approaches is useful in identifying novel mechanisms of PAH degradation that elude genetic biomarker-based investigations. Furthermore, culture-based approaches allow for the study of PAH co-metabolism, which increasingly appears to be a prominent mechanism for PAH degradation in marine microbes.
- Published
- 2024
- Full Text
- View/download PDF
4. Editorial: Women in aquatic microbiology: 2022
- Author
-
Annika Vaksmaa, Alessandra Adessi, Maria M. Sala, Alison Buchan, Catarina M. Magalhães, and Adriane Clark Jones
- Subjects
women ,STEM—Science Technology Engineering Mathematics ,underrepresentation ,aquatic ecosystems ,microbiology ,Microbiology ,QR1-502 - Published
- 2023
- Full Text
- View/download PDF
5. Grazing on Marine Viruses and Its Biogeochemical Implications
- Author
-
Kyle M. J. Mayers, Constanze Kuhlisch, Jonelle T. R. Basso, Marius R. Saltvedt, Alison Buchan, and Ruth-Anne Sandaa
- Subjects
marine viruses ,Nucleocytoviricota ,grazing ,biogeochemistry ,macronutrients ,micronutrients ,Microbiology ,QR1-502 - Abstract
ABSTRACT Viruses are the most abundant biological entities in the ocean and show great diversity in terms of size, host specificity, and infection cycle. Lytic viruses induce host cell lysis to release their progeny and thereby redirect nutrients from higher to lower trophic levels. Studies continue to show that marine viruses can be ingested by nonhost organisms. However, not much is known about the role of viral particles as a nutrient source and whether they possess a nutritional value to the grazing organisms. This review seeks to assess the elemental composition and biogeochemical relevance of marine viruses, including roseophages, which are a highly abundant group of bacteriophages in the marine environment. We place a particular emphasis on the phylum Nucleocytoviricota (NCV) (formerly known as nucleocytoplasmic large DNA viruses [NCLDVs]), which comprises some of the largest viral particles in the marine plankton that are well in the size range of prey for marine grazers. Many NCVs contain lipid membranes in their capsid that are rich carbon and energy sources, which further increases their nutritional value. Marine viruses may thus be an important nutritional component of the marine plankton, which can be reintegrated into the classical food web by nonhost organism grazing, a process that we coin the “viral sweep.” Possibilities for future research to resolve this process are highlighted and discussed in light of current technological advancements.
- Published
- 2023
- Full Text
- View/download PDF
6. Quorum Sensing and Antimicrobial Production Orchestrate Biofilm Dynamics in Multispecies Bacterial Communities
- Author
-
April C. Armes, Jillian L. Walton, and Alison Buchan
- Subjects
microbial interactions ,AHL ,quorum sensing ,biofilms ,secondary metabolites ,Roseobacteraceae ,Microbiology ,QR1-502 - Abstract
ABSTRACT Microbial interactions are often mediated by diffusible small molecules, including secondary metabolites, that play roles in cell-to-cell signaling and inhibition of competitors. Biofilms are often “hot spots” for high concentrations of bacteria and their secondary metabolites, which make them ideal systems for the study of small-molecule contributions to microbial interactions. Here, we use a five-member synthetic community consisting of Roseobacteraceae representatives to investigate the role of secondary metabolites on microbial biofilm dynamics. One synthetic community member, Rhodobacterales strain Y4I, possesses two acylated homoserine lactone (AHL)-based cell-to-cell signaling systems (pgaRI and phaRI) as well as a nonribosomal peptide synthase gene (igi) cluster that encodes the antimicrobial indigoidine. Through serial substitution of Y4I with mutants deficient in single signaling molecule pathways, the contribution of these small-molecule systems could be assessed. As secondary metabolite production is dependent upon central metabolites, the influence of growth substrate (i.e., complex medium versus defined medium with a single carbon substrate) on these dynamics was also considered. Depending on the Y4I mutant genotype included, community dynamics ranged from competitive to cooperative. The observed interactions were mostly competitive in nature. However, the community harboring a Y4I variant that was both impaired in quorum sensing (QS) pathways and unable to produce indigoidine (pgaR variant) shifted toward more cooperative interactions over time. These cooperative interactions were enhanced in the defined growth medium. The results presented provide a framework for deciphering complex, small-molecule-mediated interactions that have broad application to microbial biology. IMPORTANCE Microbial biofilms play critical roles in marine ecosystems and are hot spots for microbial interactions that play a role in the development and function of these communities. Roseobacteraceae are an abundant and active family of marine heterotrophic bacteria forming close associations with phytoplankton and carrying out key transformations in biogeochemical cycles. Group members are aggressive primary colonizers of surfaces, where they set the stage for the development of multispecies biofilm communities. Few studies have examined the impact of secondary metabolites, such as cell-to-cell signaling and antimicrobial production, on marine microbial biofilm community structure. Here, we assessed the impact of secondary metabolites on microbial interactions using a synthetic, five-member Roseobacteraceae community by measuring species composition and biomass production during biofilm growth. We present evidence that secondary metabolites influence social behaviors within these multispecies microbial biofilms, thereby improving understanding of bacterial secondary metabolite production influence on social behaviors within marine microbial biofilm communities.
- Published
- 2022
- Full Text
- View/download PDF
7. Growth Substrate and Prophage Induction Collectively Influence Metabolite and Lipid Profiles in a Marine Bacterium
- Author
-
Jonelle T. R. Basso, Katarina A. Jones, Kaylee R. Jacobs, Courtney J. Christopher, Haley B. Fielland, Shawn R. Campagna, and Alison Buchan
- Subjects
Roseobacter ,temperate phage ,growth conditions ,metabolomics ,lipidomics ,bacterial physiology ,Microbiology ,QR1-502 - Abstract
ABSTRACT Bacterial growth substrates influence a variety of biological functions, including the biosynthesis and regulation of lipid intermediates. The extent of this rewiring is not well understood nor has it been considered in the context of virally infected cells. Here, we used a one-host-two-temperate phage model system to probe the combined influence of growth substrate and phage infection on host carbon and lipid metabolism. Using untargeted metabolomics and lipidomics, we reported the detection of a suite of metabolites and lipid classes for two Sulfitobacter lysogens provided with three growth substrates of differing complexity and nutrient composition (yeast extract/tryptone [complex], glutamate and acetate). The growth medium led to dramatic differences in the detectable intracellular metabolites, with only 15% of 175 measured metabolites showing overlap across the three growth substrates. Between-strain differences were most evident in the cultures grown on acetate, followed by glutamate then complex medium. Lipid distribution profiles were also distinct between cultures grown on different substrates as well as between the two lysogens grown in the same medium. Five phospholipids, three aminolipid, and one class of unknown lipid-like features were identified. Most (≥94%) of these 75 lipids were quantifiable in all samples. Metabolite and lipid profiles were strongly determined by growth medium composition and modestly by strain type. Because fluctuations in availability and form of carbon substrates and nutrients, as well as virus pressure, are common features of natural systems, the influence of these intersecting factors will undoubtedly be imprinted in the metabolome and lipidome of resident bacteria. IMPORTANCE Community-level metabolomics approaches are increasingly used to characterize natural microbial populations. These approaches typically depend upon temporal snapshots from which the status and function of communities are often inferred. Such inferences are typically drawn from lab-based studies of select model organisms raised under limited growth conditions. To better interpret community-level data, the extent to which ecologically relevant bacteria demonstrate metabolic flexibility requires elucidation. Herein, we used an environmentally relevant model heterotrophic marine bacterium to assess the relationship between growth determinants and metabolome. We also aimed to assess the contribution of phage activity to the host metabolome. Striking differences in primary metabolite and lipid profiles appeared to be driven primarily by growth regime and, secondarily, by phage type. These findings demonstrated the malleable nature of metabolomes and lipidomes and lay the foundation for future studies that relate cellular composition with function in complex environmental microbial communities.
- Published
- 2022
- Full Text
- View/download PDF
8. Breaking Barriers with Bread: Using the Sourdough Starter Microbiome to Teach High-Throughput Sequencing Techniques
- Author
-
Benjamin H. Holt, Alison Buchan, Jennifer M. DeBruyn, Heidi Goodrich-Blair, Elizabeth McPherson, and Veronica A. Brown
- Subjects
high-throughput sequencing ,sourdough ,microbiome ,Special aspects of education ,LC8-6691 ,Biology (General) ,QH301-705.5 - Abstract
ABSTRACT Widespread usage of high-throughput sequencing (HTS) in the LIFE SCIENCES has produced a demand for undergraduate and graduate institutions to offer classes exposing students to all aspects of HTS (sample acquisition, laboratory work, sequencing technologies, bioinformatics, and statistical analyses). Despite the increase in demand, many challenges exist for these types of classes. We advocate for the usage of the sourdough starter microbiome for implementing meta-amplicon sequencing. The relatively small community, dominated by a few taxa, enables potential contaminants to be easily identified, while between-sample differences can be quickly statistically assessed. Finally, bioinformatic pipelines and statistical analyses can be carried out on personal student laptops or in a teaching computer lab. In two semesters adopting this system, 12 of 14 students were able to effectively capture the sourdough starter microbiome, using the instructor’s paired sample as reference.
- Published
- 2022
- Full Text
- View/download PDF
9. Plasmid-Mediated Stabilization of Prophages
- Author
-
Matthew J. Tuttle, Frank S. May, Jonelle T. R. Basso, Eric R. Gann, Julie Xu, and Alison Buchan
- Subjects
temperate phages ,plasmids ,mobile genetic elements ,spontaneous prophage induction ,lysogenic-lytic switch ,marine ,Microbiology ,QR1-502 - Abstract
ABSTRACT Mobile genetic elements (MGEs) drive bacterial evolution, alter gene availability within microbial communities, and facilitate adaptation to ecological niches. In natural systems, bacteria simultaneously possess or encounter multiple MGEs, yet their combined influences on microbial communities are poorly understood. Here, we investigate interactions among MGEs in the marine bacterium Sulfitobacter pontiacus. Two related strains, CB-D and CB-A, each harbor a single prophage. These prophages share high sequence identity with one another and an integration site within the host genome, yet these strains exhibit differences in “spontaneous” prophage induction (SPI) and consequent fitness. To better understand mechanisms underlying variation in SPI between these lysogens, we closed their genomes, which revealed that in addition to harboring different prophage genotypes, CB-A lacks two of the four large, low-copy-number plasmids possessed by CB-D. To assess the relative roles of plasmid content versus prophage genotype on host physiology, a panel of derivative strains varying in MGE content were generated. Characterization of these derivatives revealed a robust link between plasmid content and SPI, regardless of prophage genotype. Strains possessing all four plasmids had undetectable phage in cell-free lysates, while strains lacking either one plasmid (pSpoCB-1) or a combination of two plasmids (pSpoCB-2 and pSpoCB-4) produced high (>105 PFU/mL) phage titers. Homologous plasmid sequences were identified in related bacteria, and plasmid and phage genes were found to be widespread in Tara Oceans metagenomic data sets. This suggests that plasmid-dependent stabilization of prophages may be commonplace throughout the oceans. IMPORTANCE The consequences of prophage induction on the physiology of microbial populations are varied and include enhanced biofilm formation, conferral of virulence, and increased opportunity for horizontal gene transfer. These traits lead to competitive advantages for lysogenized bacteria and influence bacterial lifestyles in a variety of niches. However, biological controls of “spontaneous” prophage induction, the initiation of phage replication and phage-mediated cell lysis without an overt stressor, are not well understood. In this study, we observed a novel interaction between plasmids and prophages in the marine bacterium Sulfitobacter pontiacus. We found that loss of one or more distinct plasmids—which we show carry genes ubiquitous in the world’s oceans—resulted in a marked increase in prophage induction within lysogenized strains. These results demonstrate cross talk between different mobile genetic elements and have implications for our understanding of the lysogenic-lytic switches of prophages found not only in marine environments, but throughout all ecosystems.
- Published
- 2022
- Full Text
- View/download PDF
10. Microbiomes and Planctomycete diversity in large-scale aquaria habitats.
- Author
-
Claire E Elbon, Gary R LeCleir, Matthew J Tuttle, Sophie K Jurgensen, Thomas G Demas, Christian J Keller, Tina Stewart, and Alison Buchan
- Subjects
Medicine ,Science - Abstract
In commercial large-scale aquaria, controlling levels of nitrogenous compounds is essential for macrofauna health. Naturally occurring bacteria are capable of transforming toxic nitrogen species into their more benign counterparts and play important roles in maintaining aquaria health. Nitrification, the microbially-mediated transformation of ammonium and nitrite to nitrate, is a common and encouraged process for management of both commercial and home aquaria. A potentially competing microbial process that transforms ammonium and nitrite to dinitrogen gas (anaerobic ammonium oxidation [anammox]) is mediated by some bacteria within the phylum Planctomycetes. Anammox has been harnessed for nitrogen removal during wastewater treatment, as the nitrogenous end product is released into the atmosphere rather than in aqueous discharge. Whether anammox bacteria could be similarly utilized in commercial aquaria is an open question. As a first step in assessing the viability of this practice, we (i) characterized microbial communities from water and sand filtration systems for four habitats at the Tennessee Aquarium and (ii) examined the abundance and anammox potential of Planctomycetes using culture-independent approaches. 16S rRNA gene amplicon sequencing revealed distinct, yet stable, microbial communities and the presence of Planctomycetes (~1-15% of library reads) in all sampled habitats. Preliminary metagenomic analyses identified the genetic potential for multiple complete nitrogen metabolism pathways. However, no known genes diagnostic for the anammox reaction were found in this survey. To better understand the diversity of this group of bacteria in these systems, a targeted Planctomycete-specific 16S rRNA gene-based PCR approach was used. This effort recovered amplicons that share
- Published
- 2022
- Full Text
- View/download PDF
11. Quorum Sensing and Antimicrobial Production Orchestrate Biofilm Dynamics in Multispecies Bacterial Communities
- Author
-
Jillian Walton, April Armes, and Alison Buchan
- Subjects
Microbiology (medical) ,Infectious Diseases ,General Immunology and Microbiology ,Ecology ,Physiology ,Genetics ,Cell Biology - Abstract
Microbial biofilms play critical roles in marine ecosystems and are hot spots for microbial interactions that play a role in the development and function of these communities. Roseobacteraceae are an abundant and active family of marine heterotrophic bacteria forming close associations with phytoplankton and carrying out key transformations in biogeochemical cycles. Group members are aggressive primary colonizers of surfaces, where they set the stage for the development of multispecies biofilm communities.
- Published
- 2022
- Full Text
- View/download PDF
12. Thousands of small, novel genes predicted in global phage genomes
- Author
-
Brayon J. Fremin, Ami S. Bhatt, Nikos C. Kyrpides, Aditi Sengupta, Alexander Sczyrba, Aline Maria da Silva, Alison Buchan, Amelie Gaudin, Andreas Brune, Ann M. Hirsch, Anthony Neumann, Ashley Shade, Axel Visel, Barbara Campbell, Brett Baker, Brian P. Hedlund, Byron C. Crump, Cameron Currie, Charlene Kelly, Chris Craft, Christina Hazard, Christopher Francis, Christopher W. Schadt, Colin Averill, Courtney Mobilian, Dan Buckley, Dana Hunt, Daniel Noguera, David Beck, David L. Valentine, David Walsh, Dawn Sumner, Despoina Lymperopoulou, Devaki Bhaya, Donald A. Bryant, Elise Morrison, Eoin Brodie, Erica Young, Erik Lilleskov, Eva Högfors-Rönnholm, Feng Chen, Frank Stewart, Graeme W. Nicol, Hanno Teeling, Harry R. Beller, Hebe Dionisi, Hui-Ling Liao, J. Michael Beman, James Stegen, James Tiedje, Janet Jansson, Jean VanderGheynst, Jeanette Norton, Jeff Dangl, Jeffrey Blanchard, Jennifer Bowen, Jennifer Macalady, Jennifer Pett-Ridge, Jeremy Rich, Jérôme P. Payet, John D. Gladden, Jonathan D. Raff, Jonathan L. Klassen, Jonathan Tarn, Josh Neufeld, Kelly Gravuer, Kirsten Hofmockel, Ko-Hsuan Chen, Konstantinos Konstantinidis, Kristen M. DeAngelis, Laila P. Partida-Martinez, Laura Meredith, Ludmila Chistoserdova, Mary Ann Moran, Matthew Scarborough, Matthew Schrenk, Matthew Sullivan, Maude David, Michelle A. O'Malley, Monica Medina, Mussie Habteselassie, Nicholas D. Ward, Nicole Pietrasiak, Olivia U. Mason, Patrick O. Sorensen, Paulina Estrada de los Santos, Petr Baldrian, R. Michael McKay, Rachel Simister, Ramunas Stepanauskas, Rebecca Neumann, Rex Malmstrom, Ricardo Cavicchioli, Robert Kelly, Roland Hatzenpichler, Roman Stocker, Rose Ann Cattolico, Ryan Ziels, Rytas Vilgalys, Sara Blumer-Schuette, Sean Crowe, Simon Roux, Steven Hallam, Steven Lindow, Susan H. Brawley, Susannah Tringe, Tanja Woyke, Thea Whitman, Thomas Bianchi, Thomas Mock, Timothy Donohue, Timothy Y. James, Udaya C. Kalluri, Ulas Karaoz, Vincent Denef, Wen-Tso Liu, William Whitman, and Yang Ouyang
- Subjects
Microbiota ,Bacteriophages ,Genome, Viral ,Genomics ,Phylogeny ,Article ,General Biochemistry, Genetics and Molecular Biology - Abstract
Small genes (40,000 small-gene families in ~2.3 million phage genome contigs. We find that small genes in phage genomes are approximately 3-fold more prevalent than in host prokaryotic genomes. Our approach enriches for small genes that are translated in microbiomes, suggesting the small genes identified are coding. More than 9,000 families encode potentially secreted or transmembrane proteins, more than 5,000 families encode predicted anti-CRISPR proteins, and more than 500 families encode predicted antimicrobial proteins. By combining homology and genomic-neighborhood analyses, we reveal substantial novelty and diversity within phage biology, including small phage genes found in multiple host phyla, small genes encoding proteins that play essential roles in host infection, and small genes that share genomic neighborhoods and whose encoded proteins may share related functions.
- Published
- 2022
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.