22 results on '"Alves LR"'
Search Results
2. Prevalence and Risk Factors of Bone and Dental Lesions in Neotropical Deer.
- Author
-
Silva TA, Martins ADS, Alves LR, Pereira LWB, Saraiva JR, Duarte JMB, Zanetti EDS, Schweitzer CM, Dutra IS, and Borsanelli AC
- Abstract
Bone and dental lesions have been documented in various deer species globally, affecting the efficiency of ingestion and digestion, consequently influencing their general health and leading to a decline in survival and reproductive performance. The present study aimed to characterize bone and dental lesions in the dry skulls of individual deer, estimate the prevalence of these lesions, and assess potential risk factors associated with the development of bone and dental alterations. This study assessed bone and dental lesions in 180 dry skulls of eleven neotropical deer species, originating from both captivity and wildlife conditions, through direct visual inspection. A high prevalence of bone and dental lesions was observed in all analyzed species. Dental calculus was the most common alteration (96.7%), followed by dental wear (71.1%). Animal age positively correlated with most bone and dental alterations, indicating that older animals showed more lesions. Additionally, the prevalence of these alterations was similar between sexes. Moreover, all lesions were more common in captive-bred animals, likely attributed to their older age and a less diverse diet. Blastocerus dichotomus and Mazama americana were most affected by bone resorption and dental trauma and had the highest dental calculus prevalence, along with Subulo gouazoubira and Passalites nemorivagus . All eleven species evaluated in the present study were susceptible to the occurrence of bone and dental lesions. Therefore, monitoring oral health and diet in captivity are fundamental practices for the conservation of these species.
- Published
- 2024
- Full Text
- View/download PDF
3. Comprehensive characterization of extracellular vesicles produced by environmental (Neff) and clinical (T4) strains of Acanthamoeba castellanii .
- Author
-
Medeiros EG, Valente MR, Honorato L, Ferreira MdS, Mendoza SR, Gonçalves DdS, Martins Alcântara L, Gomes KX, Pinto MR, Nakayasu ES, Clair G, da Rocha IFM, Dos Reis FCG, Rodrigues ML, Alves LR, Nimrichter L, Casadevall A, and Guimarães AJ
- Subjects
- Humans, Lipid Metabolism genetics, Protozoan Proteins metabolism, Protozoan Proteins genetics, Proteome metabolism, Proteome genetics, Acanthamoeba castellanii metabolism, Acanthamoeba castellanii genetics, Extracellular Vesicles metabolism, Extracellular Vesicles genetics, Proteomics
- Abstract
We conducted a comprehensive comparative analysis of extracellular vesicles (EVs) from two Acanthamoeba castellanii strains, Neff (environmental) and T4 (clinical). Morphological analysis via transmission electron microscopy revealed slightly larger Neff EVs (average = 194.5 nm) compared to more polydisperse T4 EVs (average = 168.4 nm). Nanoparticle tracking analysis (NTA) and dynamic light scattering validated these differences. Proteomic analysis of the EVs identified 1,352 proteins, with 1,107 common, 161 exclusive in Neff, and 84 exclusively in T4 EVs. Gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) mapping revealed distinct molecular functions and biological processes and notably, the T4 EVs enrichment in serine proteases, aligned with its pathogenicity. Lipidomic analysis revealed a prevalence of unsaturated lipid species in Neff EVs, particularly triacylglycerols, phosphatidylethanolamines (PEs), and phosphatidylserine, while T4 EVs were enriched in diacylglycerols and diacylglyceryl trimethylhomoserine, phosphatidylcholine and less unsaturated PEs, suggesting differences in lipid metabolism and membrane permeability. Metabolomic analysis indicated Neff EVs enrichment in glycerolipid metabolism, glycolysis, and nucleotide synthesis, while T4 EVs, methionine metabolism. Furthermore, RNA-seq of EVs revealed differential transcript between the strains, with Neff EVs enriched in transcripts related to gluconeogenesis and translation, suggesting gene regulation and metabolic shift, while in the T4 EVs transcripts were associated with signal transduction and protein kinase activity, indicating rapid responses to environmental changes. In this novel study, data integration highlighted the differences in enzyme profiles, metabolic processes, and potential origins of EVs in the two strains shedding light on the diversity and complexity of A. castellanii EVs and having implications for understanding host-pathogen interactions and developing targeted interventions for Acanthamoeba -related diseases.IMPORTANCEA comprehensive and fully comparative analysis of extracellular vesicles (EVs) from two Acanthamoeba castellanii strains of distinct virulence, a Neff (environmental) and T4 (clinical), revealed striking differences in their morphology and protein, lipid, metabolites, and transcripts levels. Data integration highlighted the differences in enzyme profiles, metabolic processes, and potential distinct origin of EVs from both strains, shedding light on the diversity and complexity of A. castellanii EVs, with direct implications for understanding host-pathogen interactions, disease mechanisms, and developing new therapies for the clinical intervention of Acanthamoeba -related diseases., Competing Interests: The authors declare no conflict of interest.
- Published
- 2024
- Full Text
- View/download PDF
4. Unraveling DEHP influence on hemoglobin S polymerization in sickle cell disease: Ex vivo, in vitro and in silico analysis.
- Author
-
Camacho RA, Machado AV, de Oliveira Mendonça F, Teixeira-Alves LR, Guimarães-Nobre CC, Mendonça-Reis E, da Silva PF, Cardim-Pires TR, Miranda-Alves L, and Berto-Junior C
- Subjects
- Humans, Computer Simulation, Anemia, Sickle Cell genetics, Anemia, Sickle Cell metabolism, Hemoglobin, Sickle genetics, Hemoglobin, Sickle metabolism, Polymerization, Erythrocytes drug effects, Erythrocytes metabolism, Diethylhexyl Phthalate toxicity
- Abstract
Sickle cell disease (SCD) is a hereditary hemoglobinopathy, caused by a mutation at position 6 of the β-globin chain and patients are frequently exposed to several blood transfusions in order to maintain physiological function. Transfusion blood bags are composed of PVC and phthalates (as DEHP) are often introduced to the material in order to confer malleability. In this sense, DEHP can easily elute to the blood and cause harmful effects. This study aimed to unravel DEHP effect on SCD patient's hemoglobin function. We found that HbS polymerization using whole erythrocytes is decreased by DEHP in ex vivo experiments and this effect might be mediated by the DEHP-VAL6 interaction, evaluated in silico. Isolated HbS exhibited less polymerization at low DEHP concentrations and increased polymerization rate at higher concentration. When analyzing the propensity to aggregate, HbS is more inclined to aggregate when compared to HbA due to the residue 6 mutation. Circular dichroism showed characteristic hemoglobin peaks for oxygenated HbS that are lost when oxygen is sequestered, and DEHP at higher concentration mildly recovers a peak close to the second hemoglobin one. Finally, by transmission electron microscopy we demonstrated that high DEHP concentration increased polymer formation with a more organized structure. These findings show for the first-time the beneficial effect of low-dose DEHP on HbS polymerization., Competing Interests: Declaration of competing interest There is no conflict of interest., (Copyright © 2024. Published by Elsevier Ltd.)
- Published
- 2024
- Full Text
- View/download PDF
5. Density-based lipoprotein depletion improves extracellular vesicle isolation and functional analysis.
- Author
-
Merij LB, da Silva LR, Palhinha L, Gomes MT, Dib PRB, Martins-Gonçalves R, Toledo-Quiroga K, Raposo-Nunes MA, Andrade FB, de Toledo Martins S, Nascimento ALR, Rocha VN, Alves LR, Bozza PT, de Oliveira Trugilho MR, and Hottz ED
- Subjects
- Humans, Blood Platelets metabolism, Centrifugation, Density Gradient, Inflammation blood, Proteome, Monocytes metabolism, Extracellular Vesicles metabolism, Proteomics methods, Lipoproteins blood, Chromatography, Gel
- Abstract
Background: Blood plasma is the main source of extracellular vesicles (EVs) in clinical studies aiming to identify biomarkers and to investigate pathophysiological processes, especially regarding EV roles in inflammation and thrombosis. However, EV isolation from plasma has faced the fundamental issue of lipoprotein contamination, representing an important bias since lipoproteins are highly abundant and modulate cell signaling, metabolism, and thromboinflammation., Objectives: Here, we aimed to isolate plasma EVs after depleting lipoproteins, thereby improving sample purity and EV thromboinflammatory analysis., Methods: Density-based gradient ultracentrifugation (G-UC) was used for lipoprotein depletion before EV isolation from plasma through size-exclusion chromatography (SEC) or serial centrifugation (SC). Recovered EVs were analyzed by size, concentration, cellular source, ultrastructure, and bottom-up proteomics., Results: G-UC efficiently separated lipoproteins from the plasma, allowing subsequent EV isolation through SEC or SC. Combined analysis from EV proteomics, cholesterol quantification, and apoB-100 detection confirmed the significant reduction in lipoproteins from isolated EVs. Proteomic analysis identified similar gene ontology and cellular components in EVs, regardless of lipoprotein depletion, which was consistent with similar EV cellular sources, size, and ultrastructure by flow cytometry and transmission electron microscopy. Importantly, lipoprotein depletion increased the detection of less abundant proteins in EV proteome and enhanced thromboinflammatory responses of platelets and monocytes stimulated in vitro with EV isolates., Conclusion: Combination of G-UC+SEC significantly reduced EV lipoprotein contamination without interfering in EV cellular source, gene ontology, and ultrastructure, allowing the recovery of highly pure EVs with potential implications for functional assays and proteomic and lipidomic analyses., Competing Interests: Declaration of competing interests There are no conflicting interests to disclose., (Copyright © 2024 International Society on Thrombosis and Haemostasis. Published by Elsevier Inc. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
6. TSH Receptor Reduces Hemoglobin S Polymerization and Increases Deformability and Adhesion of Sickle Erythrocytes.
- Author
-
Mendonça-Reis E, Guimarães-Nobre CC, Teixeira-Alves LR, Miranda-Alves L, and Berto-Junior C
- Abstract
SCD is a hereditary disorder caused by genetic mutation in the beta-globin gene, resulting in abnormal hemoglobin, HbS that forms sickle-shaped erythrocytes under hypoxia. Patients with SCD have endocrine disorders and it was described that 7% of these patients have clinical hypothyroidism. Recent studies have shown that mature erythrocytes possess TSH receptors. Thus, we aimed to assess the effects of TSH on SCD erythrocytes. The experiments were conducted using different concentrations of TSH (1, 2, 3, and 5 mIU/L). In HbS polymerization assay, erythrocytes were exposed to TSH in hypoxia to induce polymerization, and measurements were taken for 30 minutes. The deformability assay was made using Sephacryl-S 500 columns to separate deformable from nondeformable cells. Static adhesion test utilized thrombospondin to assess erythrocyte adhesion in the presence of TSH. TSH at all contractions were able to reduce polymerization of HbS and increase deformability. The static adhesion of erythrocytes at the lowest concentrations of 1 and 2 mIU/L were increased, but at higher contractions of 3 and 5 mIU/L, static adhesion was not modulated. The results suggest that TSH has potential involvement in the pathophysiology of sickle cell disease by inhibiting HbS polymerization, positively modulating deformability and impacting static adhesion to thrombospondin., Competing Interests: The authors declare that there are no conflicts of interest., (Copyright © 2024 Evelyn Mendonça-Reis et al.)
- Published
- 2024
- Full Text
- View/download PDF
7. TcZC3HTTP, a regulatory element that contributes to Trypanosoma cruzi cell proliferation.
- Author
-
Romagnoli BAA, Lucena ACR, Freire ER, Munhoz da Rocha IF, Alves LR, and Goldenberg S
- Subjects
- Humans, RNA-Binding Proteins genetics, RNA-Binding Proteins metabolism, RNA metabolism, RNA, Messenger metabolism, Cell Proliferation, Protozoan Proteins genetics, Protozoan Proteins metabolism, Trypanosoma cruzi, Chagas Disease parasitology
- Abstract
Post-transcriptional regulation of gene expression is a critical process for adapting to and surviving Trypanosoma cruzi , a parasite with a complex life cycle. RNA-binding proteins (RBPs) are key players in this regulation, forming ribonucleoprotein complexes (messenger ribonucleoproteins) and RNA granules that control transcript stability, localization, degradation, and translation modulation. Understanding the specific roles of individual RBPs is crucial for unraveling the details of this regulatory network. In this study, we generated null mutants of the TcZC3HTTP gene, a specific RBP in the Trypanosoma family characterized by a C3H zinc finger and a DNAJ domain associated with RNA and protein binding, respectively. Through cell growth assays, we demonstrated that the absence of TcZC3HTTP or the expression of an additional tagged version impacted epimastigote growth, indicating its contribution to cell proliferation. TcZC3HTTP was found to associate with mRNAs involved in cell cycle and division in epimastigotes, while in nutritionally stressed parasites it exhibited associations with mRNAs coding for other RBPs and rRNA. Furthermore, our analysis identified that TcZC3HTTP protein partners were different during normal growth conditions compared to starvation conditions, with the latter showing enrichment of ribosomal proteins and other RBPs. Therefore, this study provides insights into TcZC3HTTP's role in the post-transcriptional regulation of gene expression during normal growth and nutritional stress in T. cruzi , uncovering its versatile functions in different cellular contexts.IMPORTANCEUnderstanding how Trypanosoma cruzi , the causative agent of Chagas disease, regulates gene expression is crucial for developing targeted interventions. In this study, we investigated the role of TcZC3HTTP, an RNA-binding protein, in post-transcriptional regulation. Our findings demonstrate that TcZC3HTTP is relevant for the growth and proliferation of epimastigotes, a stage of the parasite's life cycle. We identified its associations with specific mRNAs involved in cell cycle and division and its interactions with enzymes and other RNA-binding proteins (RBPs) under normal and starvation conditions. These insights shed light on the regulatory network underlying gene expression in T. cruzi and reveal the multifaceted functions of RBPs in this parasite. Such knowledge enhances our understanding of the parasite's biology and opens avenues for developing novel therapeutic strategies targeting post-transcriptional gene regulation in T. cruzi ., Competing Interests: The authors declare no conflict of interest.
- Published
- 2024
- Full Text
- View/download PDF
8. RNA-containing extracellular vesicles in infection.
- Author
-
Schemiko Almeida K, Rossi SA, and Alves LR
- Subjects
- Humans, Animals, MicroRNAs genetics, MicroRNAs metabolism, RNA metabolism, RNA genetics, Infections metabolism, Cell Communication, Fungi genetics, Fungi metabolism, Extracellular Vesicles metabolism, Host-Pathogen Interactions genetics
- Abstract
Extracellular vesicles (EVs) are membrane-bound particles released by cells that play vital roles in intercellular communication by transporting diverse biologically active molecules, including RNA molecules, including mRNA, miRNA, lncRNA, and other regulatory RNAs. These RNA types are protected within the lipid bilayer of EVs, ensuring their stability and enabling long-distance cellular interactions. Notably, EVs play roles in infection, where pathogens and host cells use EV-mediated RNA transfer to influence immune responses and disease outcomes. For example, bacterial EVs play a crucial role in infection by modulating host immune responses and facilitating pathogen invasion. This review explores the complex interactions between EV-associated RNA and host-pathogen dynamics in bacteria, parasites, and fungi, aiming to uncover molecular mechanisms in infectious diseases and potential therapeutic targets.
- Published
- 2024
- Full Text
- View/download PDF
9. Guidelines for the purification and characterization of extracellular vesicles of parasites.
- Author
-
Fernandez-Becerra C, Xander P, Alfandari D, Dong G, Aparici-Herraiz I, Rosenhek-Goldian I, Shokouhy M, Gualdron-Lopez M, Lozano N, Cortes-Serra N, Karam PA, Meneghetti P, Madeira RP, Porat Z, Soares RP, Costa AO, Rafati S, da Silva AC, Santarém N, Fernandez-Prada C, Ramirez MI, Bernal D, Marcilla A, Pereira-Chioccola VL, Alves LR, Portillo HD, Regev-Rudzki N, de Almeida IC, Schenkman S, Olivier M, and Torrecilhas AC
- Abstract
Parasites are responsible for the most neglected tropical diseases, affecting over a billion people worldwide (WHO, 2015) and accounting for billions of cases a year and responsible for several millions of deaths. Research on extracellular vesicles (EVs) has increased in recent years and demonstrated that EVs shed by pathogenic parasites interact with host cells playing an important role in the parasite's survival, such as facilitation of infection, immunomodulation, parasite adaptation to the host environment and the transfer of drug resistance factors. Thus, EVs released by parasites mediate parasite-parasite and parasite-host intercellular communication. In addition, they are being explored as biomarkers of asymptomatic infections and disease prognosis after drug treatment. However, most current protocols used for the isolation, size determination, quantification and characterization of molecular cargo of EVs lack greater rigor, standardization, and adequate quality controls to certify the enrichment or purity of the ensuing bioproducts. We are now initiating major guidelines based on the evolution of collective knowledge in recent years. The main points covered in this position paper are methods for the isolation and molecular characterization of EVs obtained from parasite-infected cell cultures, experimental animals, and patients. The guideline also includes a discussion of suggested protocols and functional assays in host cells., Competing Interests: No potential conflicts of interest were reported by the authors., (© 2023 The Authors. Journal of Extracellular Biology published by Wiley Periodicals LLC on behalf of International Society for Extracellular Vesicles.)
- Published
- 2023
- Full Text
- View/download PDF
10. The characterization of RNA-binding proteins and RNA metabolism-related proteins in fungal extracellular vesicles.
- Author
-
Dallastella M, de Oliveira WK, Rodrigues ML, Goldenberg S, and Alves LR
- Subjects
- Animals, Proteomics, RNA, Messenger metabolism, RNA-Binding Proteins metabolism, Mammals genetics, RNA analysis, Extracellular Vesicles metabolism
- Abstract
RNA-binding proteins (RBPs) are essential for regulating RNA metabolism, stability, and translation within cells. Recent studies have shown that RBPs are not restricted to intracellular functions and can be found in extracellular vesicles (EVs) in different mammalian cells. EVs released by fungi contain a variety of proteins involved in RNA metabolism. These include RNA helicases, which play essential roles in RNA synthesis, folding, and degradation. Aminoacyl-tRNA synthetases, responsible for acetylating tRNA molecules, are also enriched in EVs, suggesting a possible link between these enzymes and tRNA fragments detected in EVs. Proteins with canonical RNA-binding domains interact with proteins and RNA, such as the RNA Recognition Motif (RRM), Zinc finger, and hnRNP K-homology (KH) domains. Polyadenylate-binding protein (PABP) plays a critical role in the regulation of gene expression by binding the poly(A) tail of messenger RNA (mRNA) and facilitating its translation, stability, and localization, making it a key factor in post-transcriptional control of gene expression. The presence of proteins related to the RNA life cycle in EVs from different fungal species suggests a conserved mechanism of EV cargo packing. Various models have been proposed for selecting RNA molecules for release into EVs. Still, the actual loading processes are unknown, and further molecular characterization of these proteins may provide insight into the mechanism of RNA sorting into EVs. This work reviews the current knowledge of RBPs and proteins related to RNA metabolism in EVs derived from distinct fungi species, and presents an analysis of proteomic datasets through GO term and orthology analysis, Our investigation identified orthologous proteins in fungal EVs on different fungal species., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2023 Dallastella, Oliveira, Rodrigues, Goldenberg and Alves.)
- Published
- 2023
- Full Text
- View/download PDF
11. Modulation of Klebsiella pneumoniae Outer Membrane Vesicle Protein Cargo under Antibiotic Treatment.
- Author
-
Lucena ACR, Ferrarini MG, de Oliveira WK, Marcon BH, Morello LG, Alves LR, and Faoro H
- Abstract
Klebsiella pneumoniae is a nosocomial pathogen and an important propagator of multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains. Like other Gram-negative bacteria, they secrete outer membrane vesicles (OMVs) that distribute virulence and resistance factors. Here, we subjected a K . pneumoniae -XDR to subinhibitory concentrations of meropenem, amikacin, polymyxin B, and a combination of these agents to evaluate changes in the protein cargo of OMVs through liquid chromatography-tandem mass spectrometry (LC-MS/MS). Genome sequencing of the clinical isolate K . pneumoniae strain HCD1 (KpHCD1) revealed the presence of 41 resistance genes and 159 virulence factors. We identified 64 proteins in KpHCD1-OMVs modulated with different antibiotic treatments involved in processing genetic information, environmental information, cell envelope formation, energy metabolism, and drug resistance. The OMV proteome expression profile suggests that OMVs may be associated with pathogenicity, survival, stress response, and resistance dissemination.
- Published
- 2023
- Full Text
- View/download PDF
12. Modulation of Virulence Factors during Trypanosoma cruzi Differentiation.
- Author
-
Oliveira C, Holetz FB, Alves LR, and Ávila AR
- Abstract
Chagas disease is a neglected tropical disease caused by Trypanosoma cruzi . This protozoan developed several mechanisms to infect, propagate, and survive in different hosts. The specific expression of proteins is responsible for morphological and metabolic changes in different parasite stages along the parasite life cycle. The virulence strategies at the cellular and molecular levels consist of molecules responsible for mediating resistance mechanisms to oxidative damage, cellular invasion, and immune evasion, performed mainly by surface proteins. Since parasite surface coat remodeling is crucial to invasion and infectivity, surface proteins are essential virulence elements. Understanding the factors involved in these processes improves the knowledge of parasite pathogenesis. Genome sequencing has opened the door to high-throughput technologies, allowing us to obtain a deeper understanding of gene reprogramming along the parasite life cycle and identify critical molecules for survival. This review therefore focuses on proteins regulated during differentiation into infective forms considered virulence factors and addresses the current known mechanisms acting in the modulation of gene expression, emphasizing mRNA signals, regulatory factors, and protein complexes.
- Published
- 2022
- Full Text
- View/download PDF
13. ATR1 Angiotensin II Receptor Reduces Hemoglobin S Polymerization, Phosphatidylserine Exposure, and Increases Deformability of Sickle Cell Disease Erythrocytes.
- Author
-
Guimarães-Nobre CC, Mendonça-Reis E, Teixeira-Alves LR, Miranda-Alves L, and Berto-Junior C
- Subjects
- Acrylates, Angiotensin II metabolism, Angiotensin II pharmacology, Annexin A5, Erythrocytes metabolism, Hemoglobin, Sickle metabolism, Humans, Imidazoles, Phosphatidylserines, Polymerization, Receptor, Angiotensin, Type 1 metabolism, Thiophenes, Anemia, Sickle Cell, Losartan pharmacology
- Abstract
Angiotensin II (Ang II) regulates blood volume and stimulates erythropoiesis through AT1 (ATR1) and AT2 (ATR2) receptors, found in multiple tissues, including erythrocytes. Sickle cell disease (SCD) patients present altered Ang II levels. Hemoglobin S polymerization, deformability and phosphatidylserine translocation are important features of mature erythrocytes, therefore, our hypothesis is Ang II affects these parameters and, if it does, what would be the influence of AT1R and AT2R on these effects. A polymerization assay (PA), deformability, and annexin V binding were performed in SCD erythrocytes samples adding Ang II, ATR1 antagonist (losartan or eprosartan), and ATR2 antagonist (PD123319). Through the PA test, we observed a dose-dependent polymerization inhibition effect when comparing Ang II to control. Losartan did not affect the level or the rate of Ang II inhibition, while PD123319 showed an increased level of protection against polymerization, and eprosartan brought levels back to control. Ang II was able to reduce the translocation of phosphatidylserine from the inner to the outer leaflet, a marker of eryptosis, in the presence of PD123319. Also, ATR1 showed a positive effect increasing deformability. Our data shows that ATR1 is important for maintenance of erythrocyte physiological function in SCD and for prolonging its life., (© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
- Published
- 2022
- Full Text
- View/download PDF
14. Editorial: Extracellular vesicles in diseases, host-pathogen interaction and therapeutic applications.
- Author
-
Alves LR, Correa A, Guimarães AJ, and Rodrigues ML
- Subjects
- Host-Pathogen Interactions, Extracellular Vesicles
- Abstract
Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
- Published
- 2022
- Full Text
- View/download PDF
15. Caspofungin Affects Extracellular Vesicle Production and Cargo in Candida auris .
- Author
-
Amatuzzi RF, Zamith-Miranda D, Munhoz da Rocha IF, Lucena ACR, de Toledo Martins S, Streit R, Staats CC, Trentin G, Almeida F, Rodrigues ML, Nosanchuk JD, and Alves LR
- Abstract
Antifungal resistance has become more frequent, either due to the emergence of naturally resistant species or the development of mechanisms that lead to resistance in previously susceptible species. Among these fungal species of global threat, Candida auris stands out for commonly being highly resistant to antifungal drugs, and some isolates are pan-resistant. The rate of mortality linked to C. auris infections varies from 28% to 78%. In this study, we characterized C. auris extracellular vesicles (EVs) in the presence of caspofungin, an echinocandin, which is the recommended first line antifungal for the treatment of infections due to this emerging pathogen. Furthermore, we also analyzed the protein and RNA content of EVs generated by C. auris cultivated with or without treatment with caspofungin. We observed that caspofungin led to the increased production of EVs, and treatment also altered the type and quantity of RNA molecules and proteins enclosed in the EVs. There were distinct classes of RNAs in the EVs with ncRNAs being the most identified molecules, and tRNA-fragments (tRFs) were abundant in each of the strains studied. We also identified anti-sense RNAs, varying from 21 to 55 nt in length. The differentially abundant mRNAs detected in EVs isolated from yeast subjected to caspofungin treatment were related to translation, nucleosome core and cell wall. The differentially regulated proteins identified in the EVs produced during caspofungin treatment were consistent with the results observed with the RNAs, with the enriched terms being related to translation and cell wall. Our study adds new information on how an echinocandin can affect the EV pathway, which is associated with the yeast cell being able to evade treatment and persist in the host. The ability of C. auris to efficiently alter the composition of EVs may represent a mechanism for the fungus to mitigate the effects of antifungal agents.
- Published
- 2022
- Full Text
- View/download PDF
16. Selective Loading and Variations in the miRNA Profile of Extracellular Vesicles from Endothelial-like Cells Cultivated under Normoxia and Hypoxia.
- Author
-
Robert AW, Marcon BH, Angulski ABB, Martins ST, Leitolis A, Stimamiglio MA, Senegaglia AC, Correa A, and Alves LR
- Subjects
- Cell Proliferation, Endothelial Cells metabolism, Humans, Hypoxia metabolism, Extracellular Vesicles metabolism, MicroRNAs metabolism
- Abstract
Endothelial-like cells may be obtained from CD133
+ mononuclear cells isolated from human umbilical cord blood (hUCB) and expanded using endothelial-inducing medium (E-CD133 cells). Their use in regenerative medicine has been explored by the potential not only to form vessels but also by the secretion of bioactive elements. Extracellular vesicles (EVs) are prominent messengers of this paracrine activity, transporting bioactive molecules that may guide cellular response under different conditions. Using RNA-Seq, we characterized the miRNA content of EVs derived from E-CD133 cells cultivated under normoxia (N-EVs) and hypoxia (H-EVs) and observed that changing the O2 status led to variations in the selective loading of miRNAs in the EVs. In silico analysis showed that among the targets of differentially loaded miRNAs, there are transcripts involved in pathways related to cell growth and survival, such as FoxO and HIF-1 pathways. The data obtained reinforce the pro-regenerative potential of EVs obtained from E-CD133 cells and shows that fine tuning of their properties may be regulated by culture conditions.- Published
- 2022
- Full Text
- View/download PDF
17. The RNA Content of Fungal Extracellular Vesicles: At the "Cutting-Edge" of Pathophysiology Regulation.
- Author
-
Bitencourt TA, Pessoni AM, Oliveira BTM, Alves LR, and Almeida F
- Subjects
- Humans, Signal Transduction, Extracellular Vesicles metabolism, RNA metabolism
- Abstract
The role of extracellular vesicles (EVs) in interkingdom communication is widely accepted, and their role in intraspecies communication has been strengthened by recent research. Based on the regulation promoted by EV-associated molecules, the interactions between host and pathogens can reveal different pathways that ultimately affect infection outcomes. As a great part of the regulation is ascribable to RNA contained in EVs, many studies have focused on profiling RNAs in fungal and host EVs, tracking their accumulation during infection, and identifying potential target genes. Herein, we overview the main classes of RNA contained in fungal EVs and the biological processes regulated by these molecules, portraying a state-of-the-art picture of RNAs loaded in fungal EVs, while also raising several questions to drive future investigations. Our compiled data show unambiguously that EVs act as key elements in signaling pathways, and play a crucial role in pathosystems. A complete understanding of the processes that govern RNA content loading and trafficking, and its effect on recipient cells, will lead to improved technologies to ward off infectious agents that threaten human health.
- Published
- 2022
- Full Text
- View/download PDF
18. Identification of four compounds from the Pharmakon library with antifungal activity against Candida auris and species of Cryptococcus.
- Author
-
de Oliveira HC, Castelli RF, Alves LR, Nosanchuk JD, Salama EA, Seleem M, and Rodrigues ML
- Subjects
- Animals, Candida, Candida auris, Microbial Sensitivity Tests veterinary, Antifungal Agents pharmacology, Antifungal Agents therapeutic use, Cryptococcus neoformans
- Abstract
There is an urgent need to develop novel antifungals. In this study, we screened 1600 compounds for antifungal activity against Cryptococcus neoformans and Candida auris. We evaluated 4 promising compounds against 24 additional isolates of Cr. neoformans, Ca. auris, Cr. deuterogattii, and Cr. gattii. The four compounds, dequalinium chloride (DQC), bleomycin sulfate (BMS), pentamidine isethionate salt (PIS), and clioquinol (CLQ), varied in their efficacy against these pathogens but were generally more effective against cryptococci. The compounds exerted their antifungal effect via multiple mechanisms, including interference with the capsule of cryptococci and induction of hyphal-like morphology in Ca. auris. Our results indicate that DQC, BMS, PIS, and CLQ represent potential prototypes for the future development of antifungals., Lay Summary: Fungal infections can be lethal and the options to fight them are scarce. We tested 1600 molecules for their ability to control the growth of two important fungal pathogens, namely Candida auris and species of Cryptococcus. Four of these compounds showed promising antifungal activities., (© The Author(s) 2022. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology.)
- Published
- 2022
- Full Text
- View/download PDF
19. Screening of the Pandemic Response Box Reveals an Association between Antifungal Effects of MMV1593537 and the Cell Wall of Cryptococcus neoformans , Cryptococcus deuterogattii , and Candida auris .
- Author
-
de Oliveira HC, Castelli RF, Reis FCG, Samby K, Nosanchuk JD, Alves LR, and Rodrigues ML
- Subjects
- Animals, Cell Wall, Chitin, Macrophages, Microbial Sensitivity Tests, Antifungal Agents pharmacology, Candida auris drug effects, Chitinases metabolism, Cryptococcus gattii drug effects, Cryptococcus neoformans drug effects
- Abstract
There is an urgent unmet need for novel antifungals. In this study, we searched for novel antifungal activities in the Pandemic Response Box, a collection of 400 structurally diverse compounds in various phases of drug discovery. We identified five molecules which could control the growth of Cryptococcus neoformans, Cryptococcus deuterogattii, and the emerging global threat Candida auris. After eliminating compounds which demonstrated paradoxical antifungal effects or toxicity to mammalian macrophages, we selected compound MMV1593537 as a nontoxic, fungicidal molecule for further characterization of antifungal activity. Scanning electron microscopy revealed that MMV1593537 affected cellular division in all three pathogens. In Cryptococcus, MMV1593537 caused a reduction in capsular dimensions. Treatment with MMV1593537 resulted in increased detection of cell wall chitooligomers in these three species. Since chitooligomers are products of the enzymatic hydrolysis of chitin, we investigated whether surface chitinase activity was altered in response to MMV1593537 exposure. We observed peaks of enzyme activity in C. neoformans and C. deuterogattii in response to MMV1593537. We did not detect any surface chitinase activity in C. auris. Our results suggest that MMV1593537 is a promising, nontoxic fungicide whose mechanism of action, at least in Cryptococcus spp, requires chitinase-mediated hydrolysis of chitin. IMPORTANCE The development of novel antifungals is a matter of urgency. In this study, we evaluated antifungal activities in a collection of 400 molecules, using highly lethal fungal pathogens as targets. One of these molecules, namely, MMV1593537, was not toxic to host cells and controlled the growth of isolates of Cryptococcus neoformans, C. deuterogattii, C. gattii, Candida auris, C. albicans, C. parapsilosis, and C. krusei. We tested the mechanisms of antifungal action of MMV1593537 in the Cryptococcus and C. auris models and concluded that the compound affects the cell wall, a structure which is essential for fungal life. At least in Cryptococcus, this effect involved chitinase, an enzyme which is required for remodeling the cell wall. Our results suggest that MMV1593537 is a candidate for future antifungal development.
- Published
- 2022
- Full Text
- View/download PDF
20. Extracellular Vesicles Regulate Biofilm Formation and Yeast-to-Hypha Differentiation in Candida albicans.
- Author
-
Honorato L, de Araujo JFD, Ellis CC, Piffer AC, Pereira Y, Frases S, de Sousa Araújo GR, Pontes B, Mendes MT, Pereira MD, Guimarães AJ, da Silva NM, Vargas G, Joffe L, Del Poeta M, Nosanchuk JD, Zamith-Miranda D, Dos Reis FCG, de Oliveira HC, Rodrigues ML, de Toledo Martins S, Alves LR, Almeida IC, and Nimrichter L
- Subjects
- Biofilms, Fatty Acids pharmacology, Hyphae, Saccharomyces cerevisiae, Candida albicans, Extracellular Vesicles
- Abstract
In this study, we investigated the influence of fungal extracellular vesicles (EVs) during biofilm formation and morphogenesis in Candida albicans. Using crystal violet staining and scanning electron microscopy (SEM), we demonstrated that C. albicans EVs inhibited biofilm formation in vitro . By time-lapse microscopy and SEM, we showed that C. albicans EV treatment stopped filamentation and promoted pseudohyphae formation with multiple budding sites. The ability of C. albicans EVs to regulate dimorphism was further compared to EVs isolated from different C. albicans strains, Saccharomyces cerevisiae, and Histoplasma capsulatum. C. albicans EVs from distinct strains inhibited yeast-to-hyphae differentiation with morphological changes occurring in less than 4 h. EVs from S. cerevisiae and H. capsulatum modestly reduced morphogenesis, and the effect was evident after 24 h of incubation. The inhibitory activity of C. albicans EVs on phase transition was promoted by a combination of lipid compounds, which were identified by gas chromatography-tandem mass spectrometry analysis as sesquiterpenes, diterpenes, and fatty acids. Remarkably, C. albicans EVs were also able to reverse filamentation. Finally, C. albicans cells treated with C. albicans EVs for 24 h lost their capacity to penetrate agar and were avirulent when inoculated into Galleria mellonella. Our results indicate that fungal EVs can regulate yeast-to-hypha differentiation, thereby inhibiting biofilm formation and attenuating virulence. IMPORTANCE The ability to undergo morphological changes during adaptation to distinct environments is exploited by Candida albicans and has a direct impact on biofilm formation and virulence. Morphogenesis is controlled by a diversity of stimuli, including osmotic stress, pH, starvation, presence of serum, and microbial components, among others. Apart from external inducers, C. albicans also produces autoregulatory substances. Farnesol and tyrosol are examples of quorum-sensing molecules (QSM) released by C. albicans to regulate yeast-to-hypha conversion. Here, we demonstrate that fungal EVs are messengers impacting biofilm formation, morphogenesis, and virulence in C. albicans. The major players exported in C. albicans EVs included sesquiterpenes, diterpenes, and fatty acids. The understanding of how C. albicans cells communicate to regulate physiology and pathogenesis can lead to novel therapeutic tools to combat candidiasis.
- Published
- 2022
- Full Text
- View/download PDF
21. Long-Lasting Efficacy of Radio Electric Asymmetric Conveyer Neuromodulation Treatment on Functional Dysmetria, an Adaptive Motor Behavior.
- Author
-
Fontani V, Rinaldi A, Rinaldi C, Araldi L, Azzarà A, Carta AM, Casale N, Castagna A, Del Medico M, Di Stasio M, Facchini M, Greco M, LaMarca S, Loro G, Marrone A, Palattella A, Pellegata G, Ruini D, Schmitt C, Vianini F, Maioli M, Ventura C, Caltabiano F, Bueno AJ, Fugino Matuoka A, Massahiro Nabechima E, Bechelli FA, da Silveira Bossi F, Nitschke Fontana GC, Finkielsztejn J, Coelho Pereira JA, Nunes Callegaro J, Vasconcelos Pinheiro K, Ferreira Alves LR, Kodja Daguer M, Marins Martins MC, Bezerra Uliana M, Knop Zisman N, Cezar Schütz P, Fochesato PR, Celso Felipe de Castro P, Tanaka Nabechima RM, Randon RB, and Rinaldi S
- Abstract
Background Fluctuating asymmetry (FA) is widely defined as the deviation from perfect bilateral symmetry and is considered an epigenetic measure of environmental stress. Rinaldi and Fontani hypothesized that the FA morpho-functional changes originate from an adaptive motor behavior determined by functional alterations in the cerebellum and neural circuits, not caused by a lesion, but induced by environmental stress. They called this phenomenon functional dysmetria (FD). On this premise, they developed the radio electric asymmetric conveyer (REAC) technology, a neuromodulation technology aimed at optimizing the best neuro-psycho-motor strategies in relation to environmental interaction. Aims Previous studies showed that specific REAC neuro postural optimization (NPO) treatment can induce stable FD recovery. This study aimed to verify the duration of the NPO effect in inducing the stable FD recovery over time. Materials and methods Data were retrospectively collected from a population of 29,794 subjects who underwent a specific semiological FD assessment and received the NPO treatment, regardless of the pathology referred. Results The analysis of the data collected by the various participants in the study led us to ascertain the disappearance of FD in 100% of the cases treated, with a stability of the result detected up to 18 years after the single administration of the REAC NPO treatment. Conclusions The REAC NPO neurobiological modulation treatment consisting of a single administration surprisingly maintains a very long efficacy in the correction of FD. This effect can be explained as the long-lasting capacity of the NPO treatment to induce greater functional efficiency of the brain dynamics as proven in previous studies., Competing Interests: SR and VF are the authors of the REAC patent.. AR and CR are daughters of SR and VF., (Copyright © 2022, Fontani et al.)
- Published
- 2022
- Full Text
- View/download PDF
22. Isolation of Extracellular Vesicles from Candida auris.
- Author
-
Zamith-Miranda D, Alves LR, Rodrigues ML, Nimrichter L, and Nosanchuk JD
- Subjects
- Candida auris, Extracellular Vesicles chemistry
- Abstract
Extracellular vesicles (EVs) are structures released by a variety of cells from all kingdoms of life. EVs are typically involved in communication between tissues and organs, between distinct organisms, or inside microbial communities. The plasticity of these structures is reflected in the range of biological effects they are able to induce or inhibit. The study of fungal EVs is relatively new with the first report in 2007, but investigators have already demonstrated in several model systems that fungal EVs significantly modulate the host immune system and that the immunogenic materials in EV can be harnessed as vaccination platforms. This chapter describes the two main procedures used to isolate EVs from an emerging pathogenic fungus, Candida auris., (© 2022. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.)
- Published
- 2022
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.