1. Classifying age from medial clavicle using a 30-year threshold: An image analysis based approach.
- Author
-
Ivković N, Bašić Ž, and Jerković I
- Subjects
- Humans, Adult, Female, Male, Middle Aged, Neural Networks, Computer, Principal Component Analysis, Tomography, X-Ray Computed methods, Image Processing, Computer-Assisted methods, Aged, Young Adult, Age Determination by Skeleton methods, Age Factors, Logistic Models, Clavicle diagnostic imaging, Clavicle anatomy & histology, Support Vector Machine
- Abstract
This study aimed to develop image-analysis-based classification models for distinguishing individuals younger and older than 30 using the medial clavicle. We extracted 2D images of the medial clavicle from multi-slice computed tomography (MSCT) scans from Clinical Hospital Center Split (n = 204). A sample was divided into a training (164 images) and testing (40 images) dataset. The images were loaded into the Orange Data Mining 3.32.0., and transformed into vectors using the pre-trained neural network Painters: A model trained to predict painters from artwork images. We conducted Principal Components Analysis (PCA) to visualize regularities within data and reduce data dimensionality in classification. We employed three classifiers that provided >80% accuracy: Support Vector Machine (SVM), Logistic Regression (LR), and Neutral Network Identity SGD (NNI-SGD). We used 5-fold cross-validation (CV) to obtain optimal variables and performances and validated data on the independent test set, with a standard posterior probabilities (pp) threshold of 0.5 and 0.95. The explainability of the model was accessed visually by analyzing clusters and incorrectly classified images using anthropology field knowledge. Based on the PCA, clavicles clustered into categories under 30 and 40 years, between 40 and 55 years, and over 80 years. The overall accuracy with standard pp ranged from 82.5% to 92.5% for CV and 82.5% to 92.5% for the test set. The posterior probability of 0.95 provided classification accuracy up to 100% but with a lower proportion of images that could be classified. The study showed that image analysis based on a pre-trained deep neural network could contribute to distinguishing clavicles of individuals younger and older than 30., Competing Interests: The authors have declared that no competing interests exist., (Copyright: © 2024 Ivković et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)
- Published
- 2024
- Full Text
- View/download PDF