9 results on '"Belant, J. L."'
Search Results
2. Energy landscapes of Kodiak brown bears: a comparison of accelerometer and global positioning system-derived estimates
- Author
-
Finnegan, S. P., Pagano, A. M., Svoboda, N. J., Schooler, S. L., and Belant, J. L.
- Published
- 2023
- Full Text
- View/download PDF
3. Distribution model transferability for a wide-ranging species, the Gray Wolf
- Author
-
Gantchoff, M. G., Beyer, Jr, D. E., Erb, J. D., MacFarland, D. M., Norton, D. C., Roell, B. J., Price Tack, J. L., and Belant, J. L.
- Published
- 2022
- Full Text
- View/download PDF
4. Variable intraspecific space use supports optimality in an apex predator
- Author
-
Finnegan, S. P., Svoboda, N. J., Fowler, N. L., Schooler, S. L., and Belant, J. L.
- Published
- 2021
- Full Text
- View/download PDF
5. Introducing Relative Encounter Rates: a scale-invariant home range measure of animal interaction
- Author
-
(0000-0003-2224-9758) Saraiva De Menezes, J. F., Fleming, C. H., (0000-0003-2765-8147) Martinez Garcia, R., Belant, J. L., Medici, E. P., Morato, R. G., (0000-0003-0575-6408) Calabrese, J., (0000-0003-2224-9758) Saraiva De Menezes, J. F., Fleming, C. H., (0000-0003-2765-8147) Martinez Garcia, R., Belant, J. L., Medici, E. P., Morato, R. G., and (0000-0003-0575-6408) Calabrese, J.
- Abstract
Animal encounters are key components of population dynamics, community dynamics, and evolutionary processes. Consequently, measuring encounter rates (i.e. encounters per time) can be insightful. Encounter rates can be measured from animal tracking data, using metrics that can be split into two groups. The first group consists of trajectory-based metrics, i.e. measures based on serial records of animal locations. This first group includes PROX, the number of observed per number of samples. The second group, in contrast, consists of metrics based on home range overlap, including the Bhattacharyya coefficient (BC). In this study, we argue both types of metrics are limited. Trajectory-based metrics are direct measures of encounter rates but have statistical estimation issues due to their dependency on the frequency of location sampling. Meanwhile, home-rangebased metrics are statistically sound but are not proportional to encounter rates. To overcome both challenges, we proposed a new metric, Relative Encounter Rate (RER). RER increases linearly with the number of encounters and does not depend on the frequency of sampling (i.e. it is scale-invariant). In an individual-based simulation, we measured how RER, BC, and PROX relative error under different sample sizes and sampling frequencies. Further, we compared these metrics in three empirical case studies. We tested Jaguars for polygyny, deforestation effects on tapir connectivity, and an extension of the dearest enemy hypothesis with brown bears. We also compared partner hierarchy according to BC and RER in Jaguar mating clusters. In the simulation study, we found PROX overestimates the encounter rate when data has a low sampling frequency. The simulation also indicates BC overestimated encounters. Furthermore, PROX led to false positives in the Tapir and Bear case studies. In addition, PROX was incapable of detecting many individual relationships in the jaguar polygyny study. RER does not depend on sampling frequency (
- Published
- 2023
6. The search behavior of terrestrial mammals
- Author
-
Noonan, M. J., (0000-0003-2765-8147) Martinez Garcia, R., Fleming, C. H., Garcia De Figueiredo, B., Ali, A. H., Attias, N., Belant, J. L., Beyer Jr., D. E., Berteaux, D., Bidner, L. R., Boone, R., Boutin, S., Brito, J., Brown, M., Carter, A., Castellanos, A., Castellanos, F. X., Chitwood, C., Darlington, S., Antonio De La Torre, J., Dekker, J., Deperno, C., Droghini, A., Farhadinia, M., Fennessy, J., Fichtel, C., Ford, A., Gill, R., Goheen, J. R., Gustavo R. Oliveira-Santos, L., Hebblewhite, M., Hodges, K. E., Isbell, L. A., Janssen, R., Kappeler, P., Kays, R., Kaczensky, P., Kauffman, M., Lapoint, S., Alan Lashley, M., Leimgruber, P., Little, A., Macdonald, D. W., Masiaine, S., T. McBride Jr., R., Patricia Medici, E., Mertes, K., Moorman, C., Morato, R. G., Mourão, G., Mueller, T., Neilson, E. W., Pastorini, J., Patterson, B. D., Pereira, J., Petroelje, T. R., Piecora, K., John Power, R., Rachlow, J., Ranglack, D. H., Roshier, D., Safford, K., Scott, D. M., Serrouya, R., Songer, M., Songsasen, N., Stabach, J., Stacy-Dawes, J., Swingen, M. B., Thompson, J., Tucker, M. A., Velilla, M., Yarnell, R. W., Young, J., Fagan, W. F., (0000-0003-0575-6408) Calabrese, J., Noonan, M. J., (0000-0003-2765-8147) Martinez Garcia, R., Fleming, C. H., Garcia De Figueiredo, B., Ali, A. H., Attias, N., Belant, J. L., Beyer Jr., D. E., Berteaux, D., Bidner, L. R., Boone, R., Boutin, S., Brito, J., Brown, M., Carter, A., Castellanos, A., Castellanos, F. X., Chitwood, C., Darlington, S., Antonio De La Torre, J., Dekker, J., Deperno, C., Droghini, A., Farhadinia, M., Fennessy, J., Fichtel, C., Ford, A., Gill, R., Goheen, J. R., Gustavo R. Oliveira-Santos, L., Hebblewhite, M., Hodges, K. E., Isbell, L. A., Janssen, R., Kappeler, P., Kays, R., Kaczensky, P., Kauffman, M., Lapoint, S., Alan Lashley, M., Leimgruber, P., Little, A., Macdonald, D. W., Masiaine, S., T. McBride Jr., R., Patricia Medici, E., Mertes, K., Moorman, C., Morato, R. G., Mourão, G., Mueller, T., Neilson, E. W., Pastorini, J., Patterson, B. D., Pereira, J., Petroelje, T. R., Piecora, K., John Power, R., Rachlow, J., Ranglack, D. H., Roshier, D., Safford, K., Scott, D. M., Serrouya, R., Songer, M., Songsasen, N., Stabach, J., Stacy-Dawes, J., Swingen, M. B., Thompson, J., Tucker, M. A., Velilla, M., Yarnell, R. W., Young, J., Fagan, W. F., and (0000-0003-0575-6408) Calabrese, J.
- Abstract
Animals moving through landscapes need to strike a balance between finding sufficient resources to grow and reproduce while minimizing encounters with predators 1,2. Because encounter rates are determined by the average distance over which directed motion persists 1,3–5, this trade-off should be apparent in individuals’ movement. Using GPS data from 1,396 individuals across 62 species of terrestrial mammals, we show how predators maintained directed motion ~7 times longer than for similarly-sized prey, revealing how prey species must trade off search efficiency against predator encounter rates. Individual search strategies were also modulated by resource abundance, with prey species forced to risk higher predator encounter rates when resources were scarce. These findings highlight the interplay between encounter rates and resource availability in shaping broad patterns mammalian movement strategies.
- Published
- 2023
7. <scp>SNAPSHOT USA</scp> 2020: A second coordinated national camera trap survey of the United States during the <scp>COVID</scp> ‐19 pandemic
- Author
-
Kays R., Cove M. V., Diaz J., Todd K., Bresnan C., Snider M., Lee T. E., Jasper J. G., Douglas B., Crupi A. P., Weiss K. C. B., Rowe H., Sprague T., Schipper J., Lepczyk C. A., Fantle-Lepczyk J. E., Davenport J., Zimova M., Farris Z., Williamson J., Fisher-Reid M. C., Rezendes D., King S. M., Chrysafis P., Jensen A. J., Jachowski D. S., King K. C., Herrera D. J., Moore S., van der Merwe M., Lombardi J. V., Sergeyev M., Tewes M. E., Horan R. V., Rentz M. S., Driver A., Brandt L. R. S. E., Nagy C., Alexander P., Maher S. P., Darracq A. K., Barr E. G., Hess G., Webb S. L., Proctor M. D., Vanek J. P., Lafferty D. J. R., Hubbard T., Jimenez J. E., McCain C., Favreau J., Fogarty J., Hill J., Hammerich S., Gray M., Rega-Brodsky C. C., Durbin C., Flaherty E. A., Brooke J., Coster S. S., Lathrop R. G., Russell K., Bogan D. A., Shamon H., Rooney B., Rockhill A., Lonsinger R. C., O'Mara M. T., Compton J. A., Barthelmess E. L., Andy K. E., Belant J. L., Petroelje T., Wehr N. H., Beyer D. E., Scognamillo D. G., Schalk C., Day K., Ellison C. N., Ruthven C., Nunley B., Fritts S., Whittier C. A., Neiswenter S. A., Pelletier R., DeGregorio B. A., Kuprewicz E. K., Davis M. L., Baruzzi C., Lashley M. A., McDonald B., Mason D., Risch D. R., Allen M. L., Whipple L. S., Sperry J. H., Alexander E., Wolff P. J., Hagen R. H., Mortelliti A., Bolinjcar A., Wilson A. M., Van Norman S., Powell C., Coletto H., Schauss M., Bontrager H., Beasley J., Ellis-Felege S. N., Wehr S. R., Giery S. T., Pekins C. E., LaRose S. H., Revord R. S., Hansen C. P., Hansen L., Millspaugh J. J., Zorn A., Gerber B. D., Rezendes K., Adley J., Sevin J., Green A. M., Sekercioglu C. H., Pendergast M. E., Mullen K., Bird T., Edelman A. J., Romero A., O'Neill B. J., Schmitz N., Vandermus R. A., Alston J. M., Kuhn K. M., Hasstedt S. C., Lesmeister D. B., Appel C. L., Rota C., Stenglein J. L., Anhalt-Depies C., Nelson C. L., Long R. A., Remine K. R., Jordan M. J., Elbroch L. M., Bergman D., Cendejas-Zarelli S., Sager-Fradkin K., Conner M., Morris G., Parsons E., Hernandez-Yanez H., McShea W. J., Kays, R., Cove, M. V., Diaz, J., Todd, K., Bresnan, C., Snider, M., Lee, T. E., Jasper, J. G., Douglas, B., Crupi, A. P., Weiss, K. C. B., Rowe, H., Sprague, T., Schipper, J., Lepczyk, C. A., Fantle-Lepczyk, J. E., Davenport, J., Zimova, M., Farris, Z., Williamson, J., Fisher-Reid, M. C., Rezendes, D., King, S. M., Chrysafis, P., Jensen, A. J., Jachowski, D. S., King, K. C., Herrera, D. J., Moore, S., van der Merwe, M., Lombardi, J. V., Sergeyev, M., Tewes, M. E., Horan, R. V., Rentz, M. S., Driver, A., Brandt, L. R. S. E., Nagy, C., Alexander, P., Maher, S. P., Darracq, A. K., Barr, E. G., Hess, G., Webb, S. L., Proctor, M. D., Vanek, J. P., Lafferty, D. J. R., Hubbard, T., Jimenez, J. E., Mccain, C., Favreau, J., Fogarty, J., Hill, J., Hammerich, S., Gray, M., Rega-Brodsky, C. C., Durbin, C., Flaherty, E. A., Brooke, J., Coster, S. S., Lathrop, R. G., Russell, K., Bogan, D. A., Shamon, H., Rooney, B., Rockhill, A., Lonsinger, R. C., O'Mara, M. T., Compton, J. A., Barthelmess, E. L., Andy, K. E., Belant, J. L., Petroelje, T., Wehr, N. H., Beyer, D. E., Scognamillo, D. G., Schalk, C., Day, K., Ellison, C. N., Ruthven, C., Nunley, B., Fritts, S., Whittier, C. A., Neiswenter, S. A., Pelletier, R., Degregorio, B. A., Kuprewicz, E. K., Davis, M. L., Baruzzi, C., Lashley, M. A., Mcdonald, B., Mason, D., Risch, D. R., Allen, M. L., Whipple, L. S., Sperry, J. H., Alexander, E., Wolff, P. J., Hagen, R. H., Mortelliti, A., Bolinjcar, A., Wilson, A. M., Van Norman, S., Powell, C., Coletto, H., Schauss, M., Bontrager, H., Beasley, J., Ellis-Felege, S. N., Wehr, S. R., Giery, S. T., Pekins, C. E., Larose, S. H., Revord, R. S., Hansen, C. P., Hansen, L., Millspaugh, J. J., Zorn, A., Gerber, B. D., Rezendes, K., Adley, J., Sevin, J., Green, A. M., Sekercioglu, C. H., Pendergast, M. E., Mullen, K., Bird, T., Edelman, A. J., Romero, A., O'Neill, B. J., Schmitz, N., Vandermus, R. A., Alston, J. M., Kuhn, K. M., Hasstedt, S. C., Lesmeister, D. B., Appel, C. L., Rota, C., Stenglein, J. L., Anhalt-Depies, C., Nelson, C. L., Long, R. A., Remine, K. R., Jordan, M. J., Elbroch, L. M., Bergman, D., Cendejas-Zarelli, S., Sager-Fradkin, K., Conner, M., Morris, G., Parsons, E., Hernandez-Yanez, H., and Mcshea, W. J.
- Subjects
United State ,Carnivora ,Wild ,mammal ,Animals, Wild ,Didelphimorphia ,species distribution modeling ,Birds ,Bird ,camera traps ,biodiversity ,biogeography ,Cetartiodactyla ,Lagomorpha ,mammals ,occupancy modeling ,Animals ,Humans ,Mammals ,Pandemics ,United States ,COVID-19 ,Ecology, Evolution, Behavior and Systematics ,Pandemic ,camera trap ,Animal ,Human - Abstract
Managing wildlife populations in the face of global change requires regular data on the abundance and distribution of wild animals, but acquiring these over appropriate spatial scales in a sustainable way has proven challenging. Here we present the data from Snapshot USA 2020, a second annual national mammal survey of the USA. This project involved 152 scientists setting camera traps in a standardized protocol at 1485 locations across 103 arrays in 43 states for a total of 52,710 trap-nights of survey effort. Most (58) of these arrays were also sampled during the same months (September and October) in 2019, providing a direct comparison of animal populations in 2 years that includes data from both during and before the COVID-19 pandemic. All data were managed by the eMammal system, with all species identifications checked by at least two reviewers. In total, we recorded 117,415 detections of 78 species of wild mammals, 9236 detections of at least 43 species of birds, 15,851 detections of six domestic animals and 23,825 detections of humans or their vehicles. Spatial differences across arrays explained more variation in the relative abundance than temporal variation across years for all 38 species modeled, although there are examples of significant site-level differences among years for many species. Temporal results show how species allocate their time and can be used to study species interactions, including between humans and wildlife. These data provide a snapshot of the mammal community of the USA for 2020 and will be useful for exploring the drivers of spatial and temporal changes in relative abundance and distribution, and the impacts of species interactions on daily activity patterns. There are no copyright restrictions, and please cite this paper when using these data, or a subset of these data, for publication.
- Published
- 2022
8. Additional file 1 of Energy landscapes of Kodiak brown bears: a comparison of accelerometer and global positioning system-derived estimates
- Author
-
Finnegan, S. P., Pagano, A. M., Svoboda, N. J., Schooler, S. L., and Belant, J. L.
- Abstract
Additional file 1: Table S1. List of 11 a priori models and a null model to assess the influence of internal (reproductive status, age and movement rate), spatial (Terrain roughness, distance from nearest salmon spawning streams), and temporal (food abundance period and temperature) factors on brown bear GPS-derived movement-based energetic expenditure, on the Kodiak Archipelago, Alaska, USA, September 2019–November 2020. Table S2. Average hourly energetic expenditure (J kg−1 m−1) from global position system (GPS) and accelerometer (ACC)-derived estimates for eight brown bears (F = female, FY = female with young, M = male) on the Kodiak Archipelago, Alaska, USA, September 2019–November 2020. (N = number of hourly locations).
- Published
- 2023
- Full Text
- View/download PDF
9. Energy landscapes of Kodiak brown bears: A comparison of accelerometer and global positioning system derived estimates
- Author
-
Finnegan, S. P., primary, Pagano, A. M., additional, Svoboda, N. J., additional, Schooler, S. L., additional, and Belant, J. L., additional
- Published
- 2022
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.