11 results on '"Benjamin Bailleul"'
Search Results
2. Diatom phytochromes integrate the entire visible light spectra for photosensing in marine environments
- Author
-
Carole Duchêne, Jean-Pierre Bouly, Juan José Pierella Karlusich, Julien Sellés, Benjamin Bailleul, Chris Bowler, Maurizio Ribera d’Alcalà, Angela Falciatore, Marianne Jaubert, Biologie du chloroplaste et perception de la lumière chez les micro-algues, Institut de biologie physico-chimique (IBPC (FR_550)), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut de biologie de l'ENS Paris (IBENS), Département de Biologie - ENS Paris, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Stazione Zoologica Anton Dohrn (SZN), GBMF4981.01KR1661/20-1MITI interdisciplinary programFondation Bettencourt-Schueller (Coups d’élan pour la recherche francaise-2018), ANR-11-LABX-0011,DYNAMO,Dynamique des membranes transductrices d'énergie : biogénèse et organisation supramoléculaire.(2011), ANR-20-CE20-0024,CLIMA-CLOCK,Photopériodisme chez des microalgues ubiquistes modèles du phytoplancton marin : mécanismes moléculaires et sensibilité à l'augmentation de la température de l'océan(2020), ANR-11-BTBR-0008,OCEANOMICS,Biotechnologies et bioressources pour la valorisation des écosystèmes marins planctoniques(2011), ANR-19-CE20-0020,BrownCut,Elucidation des gènes spécifiques de la photosynthèse chez les diatomées(2019), ANR-21-CE02-0021,Dim,Croissance des micro-algues à très faibles lumières sous la banquise arctique à la sortie de la nuit polaire, et rôle dans l'inoculation du bloom printanier(2021), Jaubert, Marianne, Dynamique des membranes transductrices d'énergie : biogénèse et organisation supramoléculaire. - - DYNAMO2011 - ANR-11-LABX-0011 - LABX - VALID, Photopériodisme chez des microalgues ubiquistes modèles du phytoplancton marin : mécanismes moléculaires et sensibilité à l'augmentation de la température de l'océan - - CLIMA-CLOCK2020 - ANR-20-CE20-0024 - AAPG2020 - VALID, Biotech - Bioressources - Biotechnologies et bioressources pour la valorisation des écosystèmes marins planctoniques - - OCEANOMICS2011 - ANR-11-BTBR-0008 - BTBR - VALID, Elucidation des gènes spécifiques de la photosynthèse chez les diatomées - - BrownCut2019 - ANR-19-CE20-0020 - AAPG2019 - VALID, and Croissance des micro-algues à très faibles lumières sous la banquise arctique à la sortie de la nuit polaire, et rôle dans l'inoculation du bloom printanier - - Dim2021 - ANR-21-CE02-0021 - AAPG2021 - VALID
- Subjects
[SDV] Life Sciences [q-bio] ,[SDV]Life Sciences [q-bio] - Abstract
Aquatic life is strongly structured by light gradients, with gradual decrease in light intensity and differential attenuation of sunlight wavelengths with depth. How phytoplankton perceive these variations is unknown. By providing the firstin vivoquantitative assessment of the action of marine diatom phytochrome photoreceptors (DPH), we show that they efficiently trigger photoreversible responses across the entire light spectrum, unlike current models of phytochrome photosensing. The distribution and activity of DPHs in the environment indicate that they are extremely sensitive detectors of spectral light variations related to depth and optical properties of the water column in temperate and polar oceans, revealing a completely novel view of how light is perceived in the marine environment.
- Published
- 2023
3. Assessment of the allelochemical activity of Ostreopsis cf. ovata and the ovatoxins towards competitive benthic microalgae
- Author
-
Eva Ternon, Anne-Sophie Pavaux, Alexandra Peltekis, Marin-Pierre Gemin, Cécile Jauzein, Benjamin Bailleul, Rodolphe Lemée, and Olivier P. Thomas
- Subjects
Competition ,Ostreopsis cf ,Allelochemistry ,Metabolomics ,Aquatic Science ,Ovatoxins ,Ecology, Evolution, Behavior and Systematics ,ovata - Abstract
Recurrent blooms of the toxic dinoflagellate Ostreopsis cf. ovata are frequently reported in the Northwestern Mediterranean Sea. The impact of these proliferations on other microalgal species inhabiting the same habitats is of interest from an ecological prospective. In vitro experiments were carried out to investigate the influence of O. cf. ovata on the growth of the co-occurring benthic diatoms Licmophora paradoxa, Navicula arenaria and the benthic dinoflagellates Prorocentrum lima and Coolia monotis. Overall, O. cf. ovata exhibited weak allelopathic effects towards these microalgal species, with a reduction in the cell abundance for L. paradoxa and P. lima only. Interestingly, dead cells of L. paradoxa and N. arenaria were observed embedded in the thick mucus surrounding O. cf. ovata cells, suggesting that the mucous layer could act as a toxic phycosphere, especially for non-motile cells. All competitors were further exposed for 24 h to ovatoxins, the major toxins produced by O. cf. ovata, and the maximum quantum yield efficiency of L. paradoxa, N. arenaria and P. lima was affected at a minimum concentration of 10 µg mL−1. We then hypothesized that the diffusion of solubilized ovatoxins in the culture medium affects only moderately the competitors’ growth, whereas their accumulation in the mucus would yield deleterious effects. More precisely, the competitors’ sensitivity to ovatoxins was enhanced in their stationary phase of growth and resulted from a rapid inhibition of an uncharacterized photosynthetic step downstream photosystem II. Altogether, these results emphasize the predominant role of the O. cf. ovata’s mucus in driving ecological interactions and suggest that it can affect the growth of several benthic microalgae by accumulating the potent ovatoxins.
- Published
- 2022
4. Hypometabolism to survive the long polar night in the diatomFragilariopsis cylindrus
- Author
-
Nathalie Joli, Lorenzo Concia, Karel Mocaer, Julie Guterman, Juliette Laude, Sebastien Guerin, Theo Sciandra, Flavienne Bruyant, Ouardia Ait-Mohamed, Marine Beguin, Marie-Helene Forget, Clara Bourbousse, Thomas Lacour, Benjamin Bailleul, Jean-Eric Tremblay, Douglas Campbell, Johan Lavaud, Yannick Schwab, Marcel Babin, and Chris Bowler
- Abstract
Diatoms, the major eukaryotic phytoplankton in polar regions, are essential to sustain Arctic and Antarctic ecosystems. As such, it is fundamental to understand the physiological mechanisms and associated molecular basis of their resilience to the long polar night. Here, we report an integrative approach revealing that in prolonged darkness, diatom cells enter a state of quiescence associated with reduced metabolic and transcriptional activity during which no cell division occurs. We propose that minimal energy is provided by respiration and degradation of protein, carbohydrate, and lipid stores and that homeostasis is maintained by autophagy in prolonged darkness. We also report internal structural changes that manifest the morphological acclimation of cells to darkness. Our results further indicate that immediately following a return to light, diatom cells are able to use photoprotective mechanisms and rapidly resume photosynthesis. Cell division resumed rates similar to those before darkness. Our study demonstrates the remarkable robustness of polar diatoms to prolonged darkness at low temperatures.Graphical abstractTeaserTo survive the long winter, polar diatoms slow down metabolism and express genes to assure survival following return to light.
- Published
- 2023
5. List of contributors
- Author
-
Jean Alric, Ariane Atteia, Benjamin Bailleul, Steven G. Ball, Christoph Benning, Crysten E. Blaby-Haas, Alexandra-Viola Bohne, Nicolas D. Boisset, Felix Buchert, Anna Caccamo, Victoria Calatrava, Pierre Cardol, Yves Choquet, Roberta Croce, Dany Croteau, Pierre Crozet, Antoine Danon, David Dauvillée, Félix de Carpentier, Philippe Deschamps, Catherine deVitry, Laurence Drouard, Deqiang Duanmu, Benjamin D. Engel, Emilio Fernandez, Aurora Galvan, Michel Goldschmidt-Clermont, Diego Gonzalez-Halphen, Arthur R. Grossman, Patrice P. Hamel, Thomas Happe, Charles Hauser, Peter Hegemann, Anja Hemschemeier, Julien Henri, Michael Hippler, Masakazu Iwai, Xenie Johnson, J. Clark Lagarias, Théo Le Moigne, Stéphane D. Lemaire, Yonghua Li-Beisson, Martin Lohr, Luke C.M. Mackinder, Christophe H. Marchand, Sabeeha S. Merchant, Joerg Nickelsen, Krishna K. Niyogi, Matthew C. Posewitz, Jonathan Przybyla-Toscano, Kevin E. Redding, Claire Remacle, Wayne Riekhof, Jean-David Rochaix, Nicolas Rouhier, Thalia Salinas-Giegé, Stefano Santabarbara, Emanuel Sanz-Luque, Martin Scholz, Michael Schroda, Nitya Subrahmanian, Yuichiro Takahashi, Manuel Tejada-Jimenez, Johannes Vierock, Setsuko Wakao, Jaruswan Warakanont, Wojciech Wietrzynski, Felix Willmund, Robert D. Willows, Francis-André Wollman, Katia Wostrikoff, William Zerges, Karen Zinzius, and Francesca Zito
- Published
- 2023
6. The multiple routes of photosynthetic electron transfer in Chlamydomonas reinhardtii
- Author
-
Dany Croteau, Jean Alric, Benjamin Bailleul, Biologie du chloroplaste et perception de la lumière chez les micro-algues, Institut de biologie physico-chimique (IBPC (FR_550)), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut de Biosciences et Biotechnologies d'Aix-Marseille (ex-IBEB) (BIAM), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Francis-André Wollman, Arthur Grossman, and European Project: 715579,PhotoPHYTOMICS
- Subjects
PTOX ,photosynthesis ,[SDV.MP]Life Sciences [q-bio]/Microbiology and Parasitology ,flavodiiron proteins ,Chlamydomonas ,Alternative electron flows ,[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biochemistry [q-bio.BM] ,Cyclic Electron flow ,Mehler - Abstract
International audience; Like all organisms performing oxygenic photosynthesis, Chlamydomonas captures light energy in two photochemical steps to drive linear electron flow from water to NADPH and to produce ATP. However, this process alone is not sufficient to drive CO2 fixation in the Calvin–Benson cycle and to respond to environmental and metabolic constraints, for example, light availability or metabolic needs in term of ATP and NADPH. A complex network of alternative electron flows, comprises cyclic electron flow around photosystem I and various water-to-water cycles that utilize O2 as an alternative electron acceptor, provide an additional degree of freedom to face this challenge. The present chapter describes the various alternative routes of photosynthetic electron transfer in Chlamydomonas, describes how they are coordinated for optimization of photosynthesis and gives a retrospective on the early physiology work on those alternative electron flows among model photosynthetic organisms.
- Published
- 2023
7. A Plastidial Glycolytic-Gluconeogenic Switch of Mitochondrial Origin Enables Diatom Adaptations to High Latitudes
- Author
-
Richard G. Dorrell, Yue Liang, Nolwenn Gueguen, Tomomi Nonoyama, Youjun Zhang, Dany Croteau, Mathias Penot, Sandrine Adiba, Benjamin Bailleul, Valérie Gros, Juan José Pierella Karlusich, Nathanaël Zweig, Alisdair R. Fernie, Juliette Jouhet, Eric Maréchal, Chris Bowler, Institut de biologie de l'ENS Paris (IBENS), Département de Biologie - ENS Paris, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), First Institute of Oceanography [Qingdao] (FIO), Ministry of Natural Resources of China, Physiologie cellulaire et végétale (LPCV), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Max Planck Institute of Molecular Plant Physiology (MPI-MP), Max-Planck-Gesellschaft, Biologie du chloroplaste et perception de la lumière chez les micro-algues ( 1049796 ), Biologie du chloroplaste et perception de la lumière chez les micro-algues, Institut de biologie physico-chimique (IBPC (FR_550)), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut de biologie physico-chimique (IBPC (FR_550)), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), ANR-21-CE02-0014,PanArctica,Caractérisation phylogénétique, écologique et physiologique de le pan-génome des algues Arctiques(2021), and ANR-22-ERCS-0018,ChloroMosaic,Caractérisation moléculaire du réussite environnemental de la chloroplaste secondaire rouge(2022)
- Subjects
[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Molecular biology - Abstract
Organic carbon fixed through the Calvin Cycle can be diverted towards different metabolic fates within and beyond the plastids of photosynthetic eukaryotes. These include export to the cytoplasm and mitochondrial respiration; gluconeogenesis of storage compounds; and the anabolic synthesis of lipids, amino acids and cofactors via the plastidial pyruvate hub. In plants, pyruvate is principally synthesised via the lower half of glycolysis-gluconeogenesis in the cytoplasm, although a secondary plastid-targeted pathway in non-photosynthetic tissue directly links glyceraldehyde-3-phosphate to the pyruvate hub. Here, we characterize a complete plastidial lower half glycolytic-gluconeogenic pathway in the photosynthetic plastids of diatoms, obligately photosynthetic eukaryotic algae that are important contributors to marine primary production. We show that the two enzymes required to complete plastidial glycolysis-gluconeogenesis, plastidial Enolase and PGAM (bis-phospho-glycerate mutase), originated through recent duplications of mitochondria-targeted respiratory glycolytic isoforms. Through CRISPR-Cas9 mutagenesis and integrative ‘omic analyses in the diatom Phaeodactylum tricornutum, we present evidence that this pathway functions to divert excess plastidial glyceraldehyde-3-phosphate into diverse fates accessed from the pyruvate hub, and may potentially also function in the gluconeogenic direction to permit more efficient management of cellular carbon. Considering meta-genomic data, we show that this pathway is of greater importance in polar and sub-polar oceans, in which diatoms dominate primary production; and considering experimental data, we show that this principally relates to the elongated photoperiods present at high latitudes. Our data provide insights into the functions of a poorly understood yet evolutionarily recurrent plastidial metabolic pathway, and a further explanation for the success of diatoms in the contemporary ocean.
- Published
- 2022
8. Photosynthetic Light Reactions in Diatoms. II. The Dynamic Regulation of the Various Light Reactions
- Author
-
Bernard Lepetit, Douglas A. Campbell, Johann Lavaud, Claudia Büchel, Reimund Goss, Benjamin Bailleul, Laboratoire des Sciences de l'Environnement Marin (LEMAR) (LEMAR), Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Université de Brest (UBO)-Institut Universitaire Européen de la Mer (IUEM), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Biologie du chloroplaste et perception de la lumière chez les micro-algues, Institut de biologie physico-chimique (IBPC (FR_550)), and Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDV.EE]Life Sciences [q-bio]/Ecology, environment ,NPQ ,photosynthesis ,photoinhibition ,Photosystem II repair ,xanthophyll cycle ,[SDV.BV]Life Sciences [q-bio]/Vegetal Biology ,Lhcx ,alternative electron flow ,diatoms - Abstract
International audience; Photosynthesis in diatoms is performed using the same basic modules as cyanobacteria and plants. It can be regulated on multiple levels depending on the environmental cues, allowing diatoms to adjust their photosynthetic light reaction towards optimum whilst at the same time minimizing photodamage induced by light. In recent years, tremendous progress has been gained in understanding these acclimation processes, revealing several diatom-specific features. In this chapter, we trace several paths through the photosynthetic electron transport chain to optimize photosynthesis. We review how diatoms repair photoinactivated reaction centers and which mechanisms they have to preempt photodamage. Finally, photoprotection is set in an ecophysiological context, highlighting differences in photoprotection of diatoms from different habitats.
- Published
- 2022
9. Measurements of photosynthesis in mixtures reveal allelopathy between a dinoflagellate (Amphidinium carterae) and a diatom (Thalassiosira pseudonana)
- Author
-
Gwenaëlle Gain, Alexandra Peltekis, Angelo Fontana, Benjamin Bailleul, Axel Magalon, Barbara Schoepp-Cothenet, Gain, Gwenaëlle, Peltekis, Alexandra, Fontana, Angelo, and Bailleul, Benjamin
- Subjects
Biophysics ,Cell Biology ,Biochemistry - Published
- 2022
10. Photosynthetic Light Reactions in Diatoms. I. The Lipids and Light-Harvesting Complexes of the Thylakoid Membrane
- Author
-
Claudia Büchel, Reimund Goss, Benjamin Bailleul, Douglas A. Campbell, Johann Lavaud, Bernard Lepetit, Biologie du chloroplaste et perception de la lumière chez les micro-algues, Institut de biologie physico-chimique (IBPC (FR_550)), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire des Sciences de l'Environnement Marin (LEMAR) (LEMAR), Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Université de Brest (UBO)-Institut Universitaire Européen de la Mer (IUEM), and Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
lipids ,[SDV.EE]Life Sciences [q-bio]/Ecology, environment ,light harvesting ,xanthophyll cycle ,[SDV.BV]Life Sciences [q-bio]/Vegetal Biology ,LHC ,FCP ,thylakoids ,diatoms - Abstract
International audience; Light harvesting and photochemistry is performed by photosystems coupled to specific antennae embedded in the thylakoid membrane, a common principle across diatoms, plants and green algae. Still, unique features of diatoms within this common principle have been unraveled in recent decades, likely resulting from the complex evolutionary history of diatoms. These unique features are found in (i) the lipid composition of the thylakoid membrane, ii) the spatial organization of the light harvesting complexes, and iii) their protein and pigment composition. This chapter summarizes current knowledge of these three specific features, with a focus on structural and functional properties.
- Published
- 2022
11. Non-photochemical quenching enhances cyclic electron flow and prevents photodamages in the diatom Phaeodactylum tricornutum
- Author
-
Dany Croteau, Marianne Jaubert, Jean-Pierre Bouly, Angela Falciatore, and Benjamin Bailleul
- Subjects
Biophysics ,Cell Biology ,Biochemistry - Published
- 2022
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.