8 results on '"Bermeshev MV"'
Search Results
2. Cross-Linked Metathesis Polynorbornenes Based on Nadimides Bearing Hydrocarbon Substituents: Synthesis and Physicochemical Properties.
- Author
-
Sadovnikov KS, Nazarov IV, Zhigarev VA, Danshina AA, Makarov IS, and Bermeshev MV
- Abstract
Metathesis homo- and copolymerization of bifunctional monomers bearing two norbornene moieties was studied. The monomers were synthesized from cis-5-norbornene-exo-2,3-dicarboxylic anhydride and various diamines (hexamethylenediamine, decamethylenediamine, 1R,3S-isophoronediamine). The metathesis homopolymerization of these bis(nadimides) in the presence of the second-generation Grubbs catalyst afforded glassy cross-linked polymers in more than 90% yields. The metathesis copolymerization of the bis(nadimides) and a monofunctional norbornene derivative containing the β-pinene fragment also resulted in insoluble cross-linked polymers in nearly quantitative yields. The structures and purity of the synthesized polymers were confirmed via IR spectroscopy and CP/MAS NMR spectroscopy. Conditions for the fabrication of mechanically strong solution-cast thin films based on copolymers synthesized from the comonomers mentioned above were determined by varying the content of the cross-linking agent. It was shown that the films made in this way are stable in a range of organic solvents and could be useful as semipermeable or membrane materials for use in liquid organic media. The permeability of the polymer films in question to 1-phenylethanol and mandelic acid was studied. The results obtained are discussed along with the data from the DSC, TGA, and powder X-ray diffraction studies of the properties of the synthesized metathesis homo- and copolymers.
- Published
- 2024
- Full Text
- View/download PDF
3. Vinyl-Addition Homopolymeization of Norbornenes with Bromoalkyl Groups.
- Author
-
Lunin AO, Andreyanov FA, Makarov IS, and Bermeshev MV
- Abstract
Vinyl-addition polynorbornenes are of great interest as versatile templates for the targeted design of polymer materials with desired properties. These polymers possess rigid and saturated backbones, which provide them with high thermal and chemical stability as well as high glass transition temperatures. Vinyl-addition polymers from norbornenes with bromoalkyl groups are widely used as precursors of anion exchange membranes; however, high-molecular-weight homopolymers from such monomers are often difficult to prepare. Herein, we report the systematic study of vinyl-addition polymerization of norbornenes with various bromoalkyl groups on Pd-catalysts bearing N-heterocyclic carbene ligands ((NHC)Pd-systems). Norbornenes with different lengths of hydrocarbon linker (one, two, and four CH
2 groups) between the bicyclic norbornene moiety and the bromine atom were used as model monomers, while single- and three-component (NHC)Pd-systems were applied as catalysts. In vinyl-addition polymerization, the reactivity of the investigated monomers varied substantially. The relative reactivity of these monomers was assessed in copolymerization experiments, which showed that the closer the bromine is to the norbornene double-bond, the lower the monomer's reactivity. The most reactive monomer was the norbornene derivative with the largest substituent (with the longest linker). Tuning the catalyst's nature and the conditions of polymerization, we succeeded in synthesizing high-molecular-weight homopolymers from norbornenes with bromoalkyl groups (Mn up to 1.4 × 106 ). The basic physico-chemical properties of the prepared polymers were studied and considered together with the results of vinyl-addition polymerization.- Published
- 2023
- Full Text
- View/download PDF
4. Supramolecular Structure and Photo-Thermo-Electric Property of Hydrogen-Bonded Liquid Crystalline Polymer Containing Poly(4-vinylpridine) and Cyanostilbene Side Chains.
- Author
-
Lv XC, Lu L, Zuo XX, Achalkumar AS, Zhao AJ, Bermeshev MV, Wang FM, Ngeontae W, and Ren XK
- Abstract
A series of side-chain liquid crystalline polymers P4VP(CN-DBE)
x , where x is the molar ratio of cyanostilbene (CN-DBE) to poly(4-vinylpyridine) (P4VP) repeating unit, was synthesized based on the intermolecular hydrogen bonding between P4VP and CN-DBE. Their luminescent property, liquid crystalline structure and photo-thermo-electric property were elucidated using photoluminescence spectra, X-ray diffraction, thermal imaging and thermoelectric experiments. With the increase of x, the supramolecular system can be changed from lamellar structure to hexagonal columnar structure. Moreover, the P4VP(CN-DBE)x polymer with columnar structure exhibits more efficient photothermal effect. The temperature of P4VP(CN-DBE)0.6 can rise to 130 °C within 10 s under the irradiation of ultraviolet lamp. In addition, the supramolecular system possesses unique photo-thermo-electric conversion ability, and 25 mA current can be detected in the circuit coupled with the thermoelectric module. This work broadens the potential applications of hydrogen-bonded polymer, and provides a simple and facile strategy to prepare liquid crystalline polymers with photo-thermo-electric property., (© 2023 Wiley-VCH GmbH.)- Published
- 2023
- Full Text
- View/download PDF
5. Genotoxic Effect of Dicyclopropanated 5-Vinyl-2-Norbornene.
- Author
-
Novoyatlova US, Kessenikh AG, Kononchuk OV, Bazhenov SV, Fomkin AA, Kudryavtseva AA, Shorunov SV, Bermeshev MV, and Manukhov IV
- Subjects
- Gram-Negative Bacteria, Gram-Positive Bacteria, DNA Damage, Escherichia coli metabolism, Anti-Bacterial Agents pharmacology
- Abstract
Dicyclopropanated 5-vinyl-2-norbornene (dcpVNB) is a strained polycyclic hydrocarbon compound with a high energy content, which makes it promising for the development of propellant components based on it. In this work, the genotoxic properties of dcpVNB were studied using whole-cell lux -biosensors based on Escherichia coli and Bacillus subtilis . It was shown that the addition of dcpVNB to bacterial cells leads to the appearance of DNA damage inducing the SOS response and Dps expression with slight activation of the OxyR-mediated response to oxidative stress. The highest toxic effect of dcpVNB is detected by the following lux -biosensors: E. coli pColD-lux, E. coli pDps, B. subtilis pNK-DinC, and B. subtilis pNK-MrgA, in which the genes of bacterial luciferases are transcriptionally fused to the corresponding promoters: P
cda , Pdps , PdinC , and PmrgA . It was shown that lux -biosensors based on B. subtilis, and E. coli are almost equally sensitive to dcpVNB, which indicates the same permeability to this compound of cell wall of Gram-positive and Gram-negative bacteria. The activation of Pdps after dcpVNB addition maintains even in oxyR mutant E. coli strains, which means that the Pdps induction is only partially determined by the OxyR/S regulon. Comparison of specific stress effects caused by dcpVNB and 2-ethyl(bicyclo[2.2.1]heptane) (EBH), characterized by the absence of cyclopropanated groups, shows that structural changes in hydrocarbons could significantly change the mode of toxicity.- Published
- 2022
- Full Text
- View/download PDF
6. Chiral Polymers from Norbornenes Based on Renewable Chemical Feedstocks.
- Author
-
Nazarov IV, Zarezin DP, Solomatov IA, Danshina AA, Nelyubina YV, Ilyasov IR, and Bermeshev MV
- Abstract
Optically active polymers are of great interest as materials for dense enantioselective membranes, as well as chiral stationary phases for gas and liquid chromatography. Combining the versatility of norbornene chemistry and the advantages of chiral natural terpenes in one molecule will open up a facile route toward the synthesis of diverse optically active polymers. Herein, we prepared a set of new chiral monomers from cis -5-norbornene-2,3-dicarboxylic anhydride and chiral alcohols of various natures. Alcohols based on cyclic terpenes ((-)-menthol, (-)-borneol and pinanol), as well as commercially available alcohols (S-(-)-2-methylbutanol-1, S-(+)-3-octanol), were used. All the synthesized monomers were successfully involved in ring-opening metathesis polymerization, affording polymers in high yields (up to 96%) and with molecular weights in the range of 1.9 × 10
5 -5.8 × 105 (Mw ). The properties of the metathesis polymers obtained were studied by TGA and DSC analysis, WAXD, and circular dichroism spectroscopy. The polymers exhibited high thermal stability and good film-forming properties. Glass transition temperatures for the prepared polymers varied from -30 °C to +139 °C and, therefore, the state of the polymers changed from rubbery to glassy. The prepared polymers represent a new attractive platform of chiral polymeric materials for enantioselective membrane separation and chiral stationary phases for chromatography.- Published
- 2022
- Full Text
- View/download PDF
7. Gas-Transport and the Dielectric Properties of Metathesis Polymer from the Ester of exo -5-Norbornenecarboxylic Acid and 1,1'-Bi-2-naphthol.
- Author
-
Nazarov IV, Bakhtin DS, Gorlov IV, Potapov KV, Borisov IL, Lounev IV, Makarov IS, Volkov AV, Finkelshtein ES, and Bermeshev MV
- Abstract
Polymers from norbornenes are of interest for applications in opto- and microelectronic (low dielectric materials, photoresists, OLEDs). Norbornenes with ester motifs are among the most readily available norbornene derivatives. However, little is known about dielectric properties and the gas-transport of polynorbornenes from such monomers. Herein, we synthesized a new metathesis polymer from exo -5-norbornenecarboxylic acid and 1,1'-bi-2-naphthol. The designed monomer was obtained via a two-step procedure in a good yield. This norbornene derivative with a rigid and a bulky binaphthyl group was successfully polymerized over the 1st generation Grubbs catalyst, affording high-molecular-weight products (M
w ≤ 1.5·106 ) in yields of 94-98%. The polymer is amorphous and glassy (Tg = 161 °C), and it shows good thermal stability. Unlike most, polyNBi is a classic low-permeable glassy polymer. The selectivity of polyNBi was higher than that of polyNB. Being less permeable than polyNB, polyNBi unexpectedly showed a lower value of dielectric permittivity (2.7 for polyNBi vs. 5.0 for polyNB). Therefore, the molecular design of polynorbornenes has great potential to obtain polymers with desired properties in a wide range of required characteristics. Further tuning of the gas separation efficiency can be achieved by attaching an appropriate substituent to the ester and aryl group.- Published
- 2022
- Full Text
- View/download PDF
8. Ionomers Based on Addition and Ring Opening Metathesis Polymerized 5-phenyl-2-norbornene as a Membrane Material for Ionic Actuators.
- Author
-
Morozov OS, Babkin AV, Ivanchenko AV, Shachneva SS, Nechausov SS, Alentiev DA, Bermeshev MV, Bulgakov BA, and Kepman AV
- Abstract
Two types of poly(5-phenyl-2-norbornene) were synthesized via ring opening metathesis and addition polymerization. The polymers sulfonation reaction under homogeneous conditions resulted in ionomer with high sulfonation degree up to 79% (IEC 3.36 meq/g). The prepared ionomer was characterized by DSC, GPC,
1 H NMR and FT-IR. Polymers for electromechanical applications soluble in common polar organic solvents were obtained by replacing proton of sulfonic group with imidazolium and 1-methylimidazlium. Membranes were prepared using the above-mentioned polymers and 1-ethyl-3-methylimidazolium tetrafluoroborate (EMImBF4), as well as mixtures with polyvinylidene fluoride (PVDF). Mechanical, morphological, and conductive properties of the membranes were examined by tensile testing, SEM, and impedance spectroscopy, respectively. Dry and air-stable actuators with electrodes based on SWCNT were fabricated via hot-pressing. Actuators with membranes based on methylimidazolium containing ionomers outperformed classical bucky gel actuator and demonstrated high strain (up to 1.14%) and generated stress (up to 1.21 MPa) under low voltage of 2 V.- Published
- 2022
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.