1. Bioceramic versus traditional biomaterials for endodontic sealers according to the ideal properties.
- Author
-
Ortega MA, Rios L, Fraile-Martinez O, Liviu Boaru D, De Leon-Oliva D, Barrena-Blázquez S, Pereda-Cerquella C, Garrido-Gil MJ, Manteca L, Buján J, García-Honduvilla N, García-Montero C, and Rios-Parra A
- Subjects
- Humans, Materials Testing, Epoxy Resins chemistry, Zinc Oxide-Eugenol Cement, Biocompatible Materials, Root Canal Filling Materials chemistry
- Abstract
Odontology, as a scientific discipline, continuously collaborates with biomaterials engineering to enhance treatment characteristics and patients' satisfaction. Endodontics, a specialized field of dentistry, focuses on the study, diagnosis, prevention, and treatment of dental disorders affecting the dental pulp, root, and surrounding tissues. A critical aspect of endodontic treatment involves the careful selection of an appropriate endodontic sealer for clinical use, as it significantly influences treatment outcomes. Traditional sealers, such as zinc oxide-eugenol, fatty acid, salicylate, epoxy resin, silicone, and methacrylate resin systems, have been extensively used for decades. However, advancements in endodontics have given rise to bioceramic-based sealers, offering improved properties and addressing new challenges in endodontic therapy. In this review, a classification of these materials and their ideal properties are presented to provide evidence-based guidance to clinicians. Physicochemical properties, including sealing ability, stability over time and space, as well as biological properties such as biocompatibility and antibacterial characteristics, along with cost-effectiveness, are essential factors influencing clinicians' decisions based on individual patient evaluations., (©The Author(s) 2024. Open Access. This article is licensed under a Creative Commons CC-BY International License.)
- Published
- 2024
- Full Text
- View/download PDF