14 results on '"Butera, O"'
Search Results
2. Investigating the Origin of Mycobacterium chimaera Contamination in Heater-Cooler Units: Integrated Analysis with Fourier Transform Infrared Spectroscopy and Whole-Genome Sequencing
- Author
-
Bisognin, F., primary, Messina, F., additional, Butera, O., additional, Nisii, C., additional, Mazzarelli, A., additional, Cristino, S., additional, Pascale, M. R., additional, Lombardi, G., additional, Cannas, A., additional, and Dal Monte, P., additional
- Published
- 2022
- Full Text
- View/download PDF
3. Molecular Characterization of Multidrug-Resistant and Hypervirulent New Delhi Metallo-Beta-Lactamase Klebsiella pneumoniae in Lazio, Italy: A Five-Year Retrospective Study.
- Author
-
Rotondo C, Venditti C, Butera O, Dimartino V, Messina F, Properzi M, Caparrelli C, Antonelli V, D'Arezzo S, Selleri M, Nisii C, Fontana C, and On Behalf Of The Lazio Region Laboratory Study Group
- Abstract
Background/objectives: Antimicrobial resistance represents a challenge to public health systems because of the array of resistance and virulence mechanisms that lead to treatment failure and increased mortality rates. Although for years the main driver of carbapenem resistance in Italy has been the Klebsiella pneumoniae KPC carbapenemase, recent years have seen an increase in VIM and NDM metallo-beta-lactamases (MBLs). We conducted a five-year survey of New Delhi Metallo-beta-Lactamase (NDM)-producing Klebsiella pneumoniae (NDM-Kpn) clinical isolates from the Lazio region, Italy; the study aimed to elucidate the molecular mechanisms underpinning their resistant and virulent phenotype., Methods: Antimicrobial susceptibility was evaluated by automated systems and broth microdilution. In silico analysis of acquired resistance and virulence genes was performed using whole-genome sequencing (WGS), molecular typing through MLST, and core genome multi-locus sequence typing (cgMLST)., Conclusions: A total of 126 clinical NDM-Kpn isolates were collected from 19 distinct hospitals in the Lazio region. Molecular analysis highlighted the existence of NDM-1 (108/126) and NDM-5 (18/126) variants, 18 Sequence Types (STs), and 15 Cluster Types (CTs). Notably, 31/126 isolates displayed a virulence score of 4, carrying ybt , ICEKp , iuc , and rmp genes. This study identified a variety of NDM-Kpn STs, mainly carrying the bla
NDM-1 gene, with a significant number linked to high-risk clones. Of these isolates, 24.6% showed high-level resistance and virulence, emphasizing the risk of the spread of strains that combine multi-drug-resistance (MDR) and virulence. Proactive surveillance and international collaborations are needed to prevent the spread of high-risk clones, as well as further research into new antimicrobial agents to fight antibiotic resistance.- Published
- 2024
- Full Text
- View/download PDF
4. Sanitary Waters: Is It Worth Looking for Mycobacteria?
- Author
-
Cannas A, Messina F, Dal Monte P, Bisognin F, Dirani G, Zannoli S, Gatti G, Butera O, Ferraro V, Nisii C, Vecchi E, Mattei G, Diegoli G, Santoro A, Belloli GL, Girardi E, Lazzarotto T, Sambri V, and Fontana C
- Abstract
The freshwater environment is suitable for nontuberculous mycobacteria (NTMs) growth. Their high adaptability represents a considerable risk for sanitary water systems, which are a potential vector for NTMs transmission. This study investigated the occurrence of NTMs, such as Mycobacterium saskatchewanense , in hospital water systems to support the surveillance and control of potentially pathogenic NTMs. We analyzed 722 ultrapure dialysis fluid samples from Emilia Romagna Dialysis Services. Among these, 35 samples were found to be positive for M. saskatchewanense . The strains were characterized using whole-genome sequencing (WGS) and variability analysis was carried out along the whole M. saskatchewanense genome. This investigation revealed the exclusive presence of M. saskatchewanense in these dialysis machines, with low genetic variability among all strains (with a low number of different alleles: <15). The strong similarity among the strain groups was also confirmed in the WGS-based ML tree, with very few significant nodes, and no clusters were identified. This research highlights the necessity of implementing surveillance protocols and investigating any potential link to human infections, as well as stressing the urgency of enhancing surveillance and infection control measures.
- Published
- 2024
- Full Text
- View/download PDF
5. The Drug Susceptibility of Non-Tuberculous Mycobacteria (NTM) in a Referral Hospital in Rome from 2018 to 2023.
- Author
-
Mazzarelli A, Nisii C, Cannas A, Vulcano A, Bartolini B, Turchi F, Butera O, Rossi A, De Giuli C, Massimino C, Stellitano C, Antonelli V, Petriccione I, Girardi E, Gualano G, Palmieri F, and Fontana C
- Abstract
Background: The treatment of non-tuberculous mycobacterial (NTM) infections is challenging because of the difficulty in obtaining phenotypic (pDST) and/or molecular (mDST) drug susceptibility testing and the need of a multi-drug regimen. Objectives : The objective was to describe the in vitro susceptibility patterns of various NTM species through an analysis of susceptibility results obtained on isolates collected between 2018 and 2023. Methods: Species identification and mutations in rrs or rrl genes (mDST) were identified by a line probe assay, while the pDST was performed by broth microdilution and interpreted according to CLSI criteria. Results: We analysed 337 isolates of NTM belonging to 15 species/subspecies. The Mycobacterium avium complex (MAC) was the most common (62%); other species identified included M. gordonae (11%), M. kansasii (5%), the M. abscessus complex (8%), M. chelonae (6%), and M. fortuitum (2%). The results of pDST (claritromycin and amikacin) and mDST ( rrl and rrs genes) on 66 NTM strains showed that while wild-type rrl and rrs occurred in 86.3% and 94% strains, respectively, the pDST showed 88% sensitivity for clarithromycin and 57.5% for amikacin. The main incongruity was observed for macrolides. Conclusions : Most NTM are likely to be susceptible to macrolides and aminoglycosides. The molecular identification of resistant genotypes is accurate and strongly recommended for optimal patient management.
- Published
- 2024
- Full Text
- View/download PDF
6. Screening of Klebsiella pneumoniae subsp. pneumoniae Strains with Multi-Drug Resistance and Virulence Profiles Isolated from an Italian Hospital between 2020 and 2023.
- Author
-
Dimartino V, Venditti C, Messina F, D'Arezzo S, Selleri M, Butera O, Nisii C, Marani A, Arcangeli A, Gaziano R, Cosio T, Scanzano P, and Fontana C
- Abstract
Klebsiella pneumoniae strains that are resistant to multiple drugs (KPMDRs), which are often acquired in hospital settings and lead to healthcare-associated infections, pose a serious public health threat, as does hypervirulent K. pneumoniae (hvKp), which can also cause serious infections in otherwise healthy individuals. The widespread and often unnecessary use of antibiotics seen during the recent COVID-19 pandemic has exacerbated the challenges posed by antibiotic resistance in clinical settings. There is growing concern that hypervirulent (hvKp) strains may acquire genes that confer antimicrobial resistance, thus combining an MDR profile with their increased ability to spread to multiple body sites, causing difficult-to-treat infections. This study aimed to compare resistance and virulence profiles in KPC-3-producing K. pneumoniae isolates collected over four years (2020-2023). A genome-based surveillance of all MDR CRE- K. pneumoniae was used to identify genetic differences and to characterize the virulence and resistance profiles. Our results provide a picture of the evolution of resistance and virulence genes and contribute to avoiding the possible spread of isolates with characteristics of multi-drug resistance and increased virulence, which are thought to be one of the main global challenges to public health, within our hospital.
- Published
- 2024
- Full Text
- View/download PDF
7. Molnupiravir increases SARS-CoV-2 genome diversity and complexity: A case-control cohort study.
- Author
-
Gruber CEM, Tucci FG, Giombini E, Mazzotta V, Spezia PG, Rueca M, Mastrorosa I, Fabeni L, Berno G, Butera O, Rosati S, Specchiarello E, Carletti F, Focosi D, Nicastri E, Girardi E, Antinori A, and Maggi F
- Subjects
- Humans, Male, Female, Case-Control Studies, Middle Aged, Cytidine therapeutic use, Cytidine pharmacology, Aged, Adult, Whole Genome Sequencing, Genetic Variation, Uridine pharmacology, COVID-19 virology, Mutation, SARS-CoV-2 genetics, SARS-CoV-2 drug effects, Antiviral Agents therapeutic use, Antiviral Agents pharmacology, Genome, Viral, Hydroxylamines pharmacology, Hydroxylamines therapeutic use, COVID-19 Drug Treatment, Cytidine analogs & derivatives
- Abstract
Molnupiravir, an oral direct-acting antiviral effective in vitro against SARS-CoV-2, has been largely employed during the COVID-19 pandemic, since December 2021. After marketing and widespread usage, a progressive increase in SARS-CoV-2 lineages characterized by a higher transition/transversion ratio, a characteristic signature of molnupiravir action, appeared in the Global Initiative on Sharing All Influenza Data (GISAID) and International Nucleotide Sequence Database Collaboration (INSDC) databases. Here, we assessed the drug effects by SARS-CoV-2 whole-genome sequencing on 38 molnupiravir-treated persistently positive COVID-19 outpatients tested before and after treatment. Seventeen tixagevimab/cilgavimab-treated outpatients served as controls. Mutational analyses confirmed that SARS-CoV-2 exhibits an increased transition/transversion ratio seven days after initiation of molnupiravir. Moreover we observed an increased G->A ratio compared to controls, which was not related to apolipoprotein B mRNAediting enzyme, catalytic polypeptide-like (APOBEC) activity. In addition, we demonstrated for the first time an increased diversity and complexity of the viral quasispecies., (© 2024 The Authors. Journal of Medical Virology published by Wiley Periodicals LLC.)
- Published
- 2024
- Full Text
- View/download PDF
8. Implementation of Whole Genome Sequencing of Tuberculosis Isolates in a Referral Center in Rome: Six Years' Experience in Characterizing Drug-Resistant TB and Disease Transmission.
- Author
-
Cannas A, Butera O, Mazzarelli A, Messina F, Vulcano A, Parracino MP, Gualano G, Palmieri F, Di Caro A, Nisii C, Fontana C, and Girardi E
- Abstract
Over the past years, Tuberculosis (TB) control strategies have been effective in reducing drug-resistant (DR) TB globally; however, a wider implementation of new diagnostic strategies, such as Whole genome sequencing (WGS), would be critical for further improvement. The aim of this study, based on WGS of Mycobacterium tuberculosis (MTB) strains isolated in a TB referral center over 6 years, was to evaluate the efficacy of this methodology in improving therapy guidance for clinicians and in improving the understanding of the epidemiology of TB transmission. WGS was performed in addition to pDST on 1001 strains consecutively isolated between January 2016 and December 2021; the results allowed us to improve the quality of data on resistance and to identify possible clusters of transmission. Prediction of rifampicin-resistant (RR) or multi-drug-resistant TB strains (MDR-TB, defined as resistance to at least rifampicin and isoniazid) was obtained for 50 strains (5%). Mutations predictive of an MDR isolate were further characterized, and Ser450Leu and Ser315Thr were found to be the most frequent mutations in rpoB and katG genes, respectively. Discordances between WGS and phenotypic drug susceptibility testing (pDST) were found in few strains, and their impact on clinical decisions and outcome was addressed. The introduction of WGS in our Institute improved our diagnostic routine, allowing accurate patient management, and was a valid instrument for epidemiological investigations and infection control.
- Published
- 2024
- Full Text
- View/download PDF
9. Genomic and Epidemiologic Surveillance of SARS-CoV-2 in the Pandemic Period: Sequencing Network of the Lazio Region, Italy.
- Author
-
Rueca M, Berno G, Agresta A, Spaziante M, Gruber CEM, Fabeni L, Giombini E, Butera O, Barca A, Scognamiglio P, Girardi E, Maggi F, Valli MB, Vairo F, and Sars-CoV-Lazio Genomic Surveillance Study Group
- Subjects
- Humans, Pandemics, Genomics, Epidemiological Monitoring, Italy epidemiology, SARS-CoV-2 genetics, COVID-19 epidemiology
- Abstract
Since the beginning of the COVID-19 pandemic, large-scale genomic sequencing has immediately pointed out that SARS-CoV-2 has rapidly mutated during the course of the pandemic, resulting in the emergence of variants with a public health impact. In this context, strictly monitoring the circulating strains via NGS has proven to be crucial for the early identification of new emerging variants and the study of the genomic evolution and transmission of SARS-CoV-2. Following national and international guidelines, the Lazio region has created a sequencing laboratory network (WGSnet-Lazio) that works in synergy with the reference center for epidemiological surveillance (SERESMI) to monitor the circulation of SARS-CoV-2. Sequencing was carried out with the aims of characterizing outbreak transmission dynamics, performing the genomic analysis of viruses infecting specific categories of patients (i.e., immune-depressed, travelers, and people with severe symptoms) and randomly monitoring variant circulation. Here we report data emerging from sequencing activities carried out by WGSnet-Lazio (from February 2020 to October 2022) linked with epidemiological data to correlate the circulation of variants with the clinical and demographic characteristics of patients. The model of the sequencing network developed in the Lazio region proved to be a useful tool for SARS-CoV-2 surveillance and to support public health measures for epidemic containment.
- Published
- 2023
- Full Text
- View/download PDF
10. Treatment-Emergent Cilgavimab Resistance Was Uncommon in Vaccinated Omicron BA.4/5 Outpatients.
- Author
-
Gruber CEM, Tucci FG, Rueca M, Mazzotta V, Gramigna G, Vergori A, Fabeni L, Berno G, Giombini E, Butera O, Focosi D, Prandi IG, Chillemi G, Nicastri E, Vaia F, Girardi E, Antinori A, and Maggi F
- Subjects
- Humans, COVID-19 Drug Treatment, Retrospective Studies, Antibodies, Monoclonal, Outpatients, Spike Glycoprotein, Coronavirus genetics
- Abstract
Mutations in the SARS-CoV-2 Spike glycoprotein can affect monoclonal antibody efficacy. Recent findings report the occurrence of resistant mutations in immunocompromised patients after tixagevimab/cilgavimab treatment. More recently, the Food and Drug Agency revoked the authorization for tixagevimab/cilgavimab, while this monoclonal antibody cocktail is currently recommended by the European Medical Agency. We retrospectively reviewed 22 immunocompetent patients at high risk for disease progression who received intramuscular tixagevimab/cilgavimab as early COVID-19 treatment and presented a prolonged high viral load. Complete SARS-CoV-2 genome sequences were obtained for a deep investigation of mutation frequencies in Spike protein before and during treatment. At seven days, only one patient showed evidence of treatment-emergent cilgavimab resistance. Quasispecies analysis revealed two different deletions on the Spike protein (S:del138-144 or S:del141-145) in combination with the resistance S:K444N mutation. The structural and dynamic impact of the two quasispecies was characterized by using molecular dynamics simulations, showing the conservation of the principal functional movements in the mutated systems and their capabilities to alter the structure and dynamics of the RBD, responsible for the interaction with the ACE2 human receptor. Our study underlines the importance of prompting an early virological investigation to prevent drug resistance or clinical failures in immunocompetent patients.
- Published
- 2023
- Full Text
- View/download PDF
11. Epidemiological and Molecular Investigation of the Heater-Cooler Unit (HCU)-Related Outbreak of Invasive Mycobacterium chimaera Infection Occurred in Italy.
- Author
-
Cannas A, Campanale A, Minella D, Messina F, Butera O, Nisii C, Mazzarelli A, Fontana C, Lispi L, Maraglino F, Di Caro A, and Sabbatucci M
- Abstract
Background: From 2013 onwards, a large outbreak of Mycobacterium chimaera (MC) invasive infection, which was correlated with the use of contaminated heater-cooler units (HCUs) during open chest surgery, was reported from all over the world. Here, we report the results of the epidemiological and molecular investigations conducted in Italy after the alarm raised about this epidemic event., Methods: MC strains isolated from patients or from HCU devices were characterized by genomic sequencing and molecular epidemiological analysis., Results: Through retrospective epidemiological analysis conducted between January 2010 and December 2022, 40 possible cases of patients infected with MC were identified. Thirty-six strains isolated from these patients were analysed by whole genome sequencing (WGS) and were found to belong to the genotypes 1.1 or 1.8, which are the genotypes correlated with the outbreak. Most of the cases presented with prosthetic valve endocarditis, vascular graft infection or disseminated infection. Among the cases found, there were 21 deaths. The same analysis was carried out on HCU devices. A total of 251 HCUs were found to be contaminated by MC; genotypes 1.1 or 1.8 were identified in 28 of those HCUs., Conclusions: To ensure patients' safety and adequate follow-up, clinicians and general practitioners were made aware of the results and public health measures, and recommendations were issued to prevent further cases in the healthcare settings. The Italian Society of Cardiac Surgery performed a national survey to assess the incidence of HCU-related MC prosthetic infections in cardiac surgery. No cases were reported after HCU replacement or structural modification and disinfection and possibly safe allocation outside surgical rooms.
- Published
- 2023
- Full Text
- View/download PDF
12. Temporal intra-host variability of mpox virus genomes in multiple body tissues.
- Author
-
Rueca M, Tucci FG, Mazzotta V, Gramigna G, Gruber CEM, Fabeni L, Giombini E, Matusali G, Pinnetti C, Mariano A, Butera O, Specchiarello E, Mondi A, Lanini S, Carletti F, Girardi E, Vaia F, Nicastri E, Antinori A, and Maggi F
- Subjects
- Humans, Phylogeny, Genome, Viral, Cluster Analysis, HIV Infections, Mpox (monkeypox)
- Abstract
Whole-genome sequencing (WGS) has been widely used for the genomic characterization and the phylogenesis of mpox virus (MPXV) 2022 multi-country outbreak. To date, no evidence has been reported on intra-host evolution within samples collected over time from a single patient with long-term infection. Fifty-one samples were collected from five patients at different time points post-symptom onset. All samples were confirmed as MPXV DNA positive, amplified by a multiplexed PCR amplicon, and sequenced by WGS. Complete MPXV genomes were assembled by reference mapping and then aligned to perform phylogenetic and hierarchical clustering analysis. Large intra-host variability was observed among the MPXV genomes sequenced from samples of two immunocompromised with advanced HIV-1 infection patients with prolonged MPXV shedding. Overall, 20 nucleotide mutations were identified in the 32 genomes from HIV patients, differently distributed in samples collected from different tissues and at different time points. No sequence compartmentalization nor variation was observed in the three patients with rapid viral clearance. MPXV exhibits adaptation to changing environments within the infected host and consequently demonstrates tissue compartmentalization. Further studies are needed to elucidate the role of this adaptation in forming a pool of genetic variability and contributing to viral persistence and its clinical implications., (© 2023 The Authors. Journal of Medical Virology published by Wiley Periodicals LLC.)
- Published
- 2023
- Full Text
- View/download PDF
13. Genomic surveillance of SARS-CoV-2 positive passengers on flights from China to Italy, December 2022.
- Author
-
Novazzi F, Giombini E, Rueca M, Baj A, Fabeni L, Genoni A, Ferrante FD, Gramigna G, Gruber CEM, Boutahar S, Minosse C, Butera O, Pasciuta R, Focosi D, Colombo A, Antinori A, Girardi E, Vaia F, and Maggi F
- Subjects
- Humans, Genomics, China epidemiology, Italy epidemiology, SARS-CoV-2 genetics, COVID-19 epidemiology
- Abstract
With numbers of COVID-19 cases having substantially increased at the end of 2022 in China, some countries have started or expanded testing and genomic surveillance of travellers. We report screening results in Italy in late December 2022 of 556 flight passengers in provenance from two Chinese provinces. Among these passengers, 126 (22.7%) tested SARS-CoV-2 positive. Whole genome sequencing of 61 passengers' positive samples revealed Omicron variants, notably sub-lineages BA.5.2.48, BF.7.14 and BQ.1.1, in line with data released from China.
- Published
- 2023
- Full Text
- View/download PDF
14. Molecular Characterization of Whole-Genome SARS-CoV-2 from the First Suspected Cases of the XE Variant in the Lazio Region, Italy.
- Author
-
Rueca M, Giombini E, Gramigna G, Gruber CEM, Fabeni L, Corpolongo A, Mazzotta V, Corso L, Butera O, Valli MB, Carletti F, Pignalosa S, Vairo F, Nicastri E, Antinori A, Girardi E, Vaia F, Maggi F, and Sars CoV-Lazio Surveillance Study Group
- Abstract
We report two cases of SARS-CoV-2 recombinant variant XE detected in nasopharyngeal swabs (NPS) of hospitalized patients with no evident epidemiological link in Lazio, Central Italy. Whole-Genome Sequencing (WGS) performed on an Ion Torrent GSS5 platform according to Italian flash surveys showed genomes corresponding to the PANGOLIN unclassified lineage and the Nextclade XE clade. Further analyses were then carried out to investigate more deeply the genetic characteristics of these XE-like sequences. When phylogenetic trees, by using IQ-TREE, were built splitting the genome into two regions according to the putative XE recombination site, the upstream and downstream regions were seen to be clustered near BA.1 and BA.2 sequences, respectively. However, our XE-like sequences clustered separately, with a significant bootstrap, from the classified European and Italian XE strains, although the recombination site between BA.1 and BA.2 was identified at the nucleotide site 11556 by RDP4 software, consistent with the putative XE breakpoint. These findings show the risk of the introduction of novel recombinant variants of SARS-CoV-2 and the existence of XE-like strains, phylogenetically separated, that could make their exact taxonomy difficult. It follows the need for continued SARS-CoV-2 surveillance by WGS.
- Published
- 2022
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.