4 results on '"Canales HDS"'
Search Results
2. Impact of hydrophobic and hydrophilic surface properties on Pseudomonas aeruginosa adhesion in materials used in mineral water wells.
- Author
-
Vilas Boas D, Lima CMG, Margalho LP, Amorim-Neto DP, Canales HDS, Lemos Junior WJF, Ramos AC, Saraiva G, and Sant'Ana AS
- Subjects
- Water Wells, Biofilms, Brazil, Water Microbiology, Pseudomonas aeruginosa physiology, Bacterial Adhesion, Hydrophobic and Hydrophilic Interactions, Surface Properties, Mineral Waters microbiology
- Abstract
Microbiologically contaminated water is a significant source of infections in humans and animals, with Pseudomonas aeruginosa (PSA) being particularly concerning due to its ability to thrive in water environments and its resistance to many disinfectants. Therefore, this study investigates the adhesion potential of PSA strains on various materials used in mineral water extraction wells, focusing on hydrophobic and hydrophilic properties. Mineral water samples were collected from three wells (P-01, P-07, and P-08) within the Guarani Aquifer System and Fractured Aquifer System (SAF) in Brazil. The physicochemical properties of the water, including concentrations of Sr (strontium), Fe (iron), Si (silicon), SO
4 2- (sulfate ions), Cl- (chloride ions), and ORP (oxidation-reduction potential), were analyzed. Results indicated higher PSA adhesion on hydrophobic materials, particularly high-density polyethylene (HDPE) and geomechanically plasticized polyvinyl chloride (PVC). Multiple correlation analyses revealed positive correlations between PSA adhesion on hydrophilic materials and Sr, Fe, Si, SO4 2- , and Cl- concentrations. Conversely, ORP negatively correlated with bacterial adhesion on PVC surfaces, suggesting higher ORP values reduced PSA attachment. These findings highlight the importance of water composition and material properties in influencing bacterial adhesion and potential biofilm formation in mineral water extraction systems.- Published
- 2024
- Full Text
- View/download PDF
3. Spore-forming bacteria in gelatin: Characterization, identification by 16S rRNA and MALDI-TOF mass spectrometry (MS), and presence of heat resistance and virulence genes.
- Author
-
Heckler C, Vale MG, Canales HDS, Stradiotto GC, Giordano ALPL, Schreiber AZ, and Sant'Ana AS
- Subjects
- Virulence genetics, Food Microbiology, Bacillus genetics, Bacillus isolation & purification, Gelatin, Spores, Bacterial genetics, Hot Temperature, RNA, Ribosomal, 16S genetics, Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Abstract
Gelatin, a versatile protein derived from collagen, is widely used in the food, pharmaceutical and medical sectors. However, bacterial contamination by spore-forming bacteria during gelatin processing represents a significant concern for product safety and quality. In this study, an investigation was carried out to explore the heat and chemical resistance, as well as the identification and characterization of spore-forming bacteria isolated from gelatin processing. The methodologies involved chemical resistance tests with drastic pH in microplates and thermal resistance tests in capillary tubes of various isolates obtained at different processing stages. In addition, phenotypic and genotypic analyses were carried out to characterize the most resistant isolates of spore-forming bacteria. The findings of this study revealed the presence of several species, including Bacillus cereus, Bacillus licheniformis, Bacillus sonorensis, Bacillus subtilis, Geobacillus stearothermophilus, and Clostridium sporogenes, with some isolates exhibiting remarkable chemical and heat resistances. In addition, a significant proportion of the most resistant isolates showed gelatinase activity (n = 19/21; 90.5 %) and the presence of heat resistance (n = 5/21; 23.8 %), and virulence genes (n = 11/21; 52.4 %). The results of this study suggest that interventions should be done in quality control practices and that process parameter adjustments and effective contamination reduction strategies should be implemented through gelatin processing., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier B.V. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
4. Enterotoxigenic Staphylococcus aureus in Brazilian artisanal cheeses: Occurrence, counts, phenotypic and genotypic profiles.
- Author
-
Margalho LP, Graça JS, Kamimura BA, Lee SHI, Canales HDS, Chincha AIA, Caturla MYR, Brexó RP, Crucello A, Alvarenga VO, Cruz AG, Oliveira CAF, and Sant'Ana AS
- Subjects
- Animals, Staphylococcus aureus genetics, Brazil, Food Microbiology, Stainless Steel analysis, Enterotoxins genetics, Milk microbiology, Cheese microbiology, Methicillin-Resistant Staphylococcus aureus, Staphylococcal Infections
- Abstract
The present study aimed to assess the occurrence and counts of Staphylococcus aureus in Brazilian artisanal cheeses (BAC) produced in five regions of Brazil: Coalho and Manteiga (Northeast region); Colonial and Serrano (South); Caipira (Central-West); Marajó (North); and Minas Artisanal cheeses, from Araxá, Campos das Vertentes, Cerrado, Serro and Canastra microregions (Southeast). The resistance to chlorine-based sanitizers, ability to attach to stainless steel surfaces, and antibiogram profile of a large set of S. aureus strains (n = 585) were assessed. Further, a total of 42 isolates were evaluated for the presence of enterotoxigenic genes (sea, seb, sec, sed, see, seg, sei, sej, and ser) and submitted to typing using pulsed-field gel electrophoresis (PFGE). BAC presented high counts of S. aureus (3.4-6.4 log CFU/g), varying from 25 to 62.5%. From the S. aureus strains (n = 585) assessed, 16% could resist 200 ppm of sodium hypochlorite, whereas 87.6% produced strong ability to attach to stainless steel surfaces, corroborating with S. aureus ability to persist and spread in the environment. Furthermore, the relatively high frequency (80.5%) of multidrug-resistant S. aureus and the presence of enterotoxin genes in 92.6% of the strains is of utmost attention. It reveals the lurking threat of SFP that can survive when conditions are favorable. The presence of enterotoxigenic and antimicrobial-resistant strains of S. aureus in cheese constitutes a potential risk to public health. This result calls for better control of cheese contamination sources, and taking hygienic measures is necessary for food safety. More attention should be paid to animal welfare and hygiene practices in some dairy farms during manufacturing to enhance the microbiological quality of traditional cheese products., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Ltd. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.