14 results on '"Casari, Erika"'
Search Results
2. Proteasome-mediated degradation of long-range nucleases negatively regulates resection of DNA double-strand breaks
- Author
-
Gnugnoli, Marco, Rinaldi, Carlo, Casari, Erika, Pizzul, Paolo, Bonetti, Diego, and Longhese, Maria Pia
- Published
- 2024
- Full Text
- View/download PDF
3. The PP2A phosphatase counteracts the function of the 9-1-1 axis in checkpoint activation
- Author
-
Casari, Erika, Pizzul, Paolo, Rinaldi, Carlo, Gnugnoli, Marco, Clerici, Michela, and Longhese, Maria Pia
- Published
- 2023
- Full Text
- View/download PDF
4. Functional and molecular insights into the role of Sae2 C-terminus in the activation of MRX endonuclease.
- Author
-
Colombo, Chiara Vittoria, Casari, Erika, Gnugnoli, Marco, Corallo, Flavio, Tisi, Renata, and Longhese, Maria Pia
- Published
- 2024
- Full Text
- View/download PDF
5. Proteasome-mediated degradation of long-range nucleases negatively regulates resection of DNA double-strand breaks
- Author
-
Gnugnoli, M, Rinaldi, C, Casari, E, Pizzul, P, Bonetti, D, Longhese, M, Gnugnoli, Marco, Rinaldi, Carlo, Casari, Erika, Pizzul, Paolo, Bonetti, Diego, Longhese, Maria Pia, Gnugnoli, M, Rinaldi, C, Casari, E, Pizzul, P, Bonetti, D, Longhese, M, Gnugnoli, Marco, Rinaldi, Carlo, Casari, Erika, Pizzul, Paolo, Bonetti, Diego, and Longhese, Maria Pia
- Abstract
Homologous recombination is initiated by the nucleolytic degradation (resection) of DNA double-strand breaks (DSBs). DSB resection is a two-step process. In the short-range step, the MRX (Mre11-Rad50-Xrs2) complex, together with Sae2, incises the 5′-terminated strand at the DSB end and resects back toward the DNA end. Then, the long-range resection nucleases Exo1 and Dna2 further elongate the resected DNA tracts. We found that mutations lowering proteasome functionality bypass the need for Sae2 in DSB resection. In particular, the dysfunction of the proteasome subunit Rpn11 leads to hyper-resection and increases the levels of both Exo1 and Dna2 to such an extent that it allows the bypass of the requirement for either Exo1 or Dna2, but not for both. These observations, along with the finding that Exo1 and Dna2 are ubiquitylated, indicate a role of the proteasome in restraining DSB resection by negatively controlling the abundance of the long-range resection nucleases.
- Published
- 2024
6. Exo1 cooperates with Tel1/ATM in promoting recombination events at DNA replication forks
- Author
-
Galli, M, Frigerio, C, Colombo, C, Casari, E, Longhese, M, Clerici, M, Galli, Michela, Frigerio, Chiara, Colombo, Chiara Vittoria, Casari, Erika, Longhese, Maria Pia, Clerici, Michela, Galli, M, Frigerio, C, Colombo, C, Casari, E, Longhese, M, Clerici, M, Galli, Michela, Frigerio, Chiara, Colombo, Chiara Vittoria, Casari, Erika, Longhese, Maria Pia, and Clerici, Michela
- Abstract
Tel1/ataxia telangiectasia mutated (ATM) kinase plays multiple functions in response to DNA damage, promoting checkpoint-mediated cell-cycle arrest and repair of broken DNA. In addition, Saccharomyces cerevisiae Tel1 stabilizes replication forks that arrest upon the treatment with the topoisomerase poison camptothecin (CPT). We discover that inactivation of the Exo1 nuclease exacerbates the sensitivity of Tel1-deficient cells to CPT and other agents that hamper DNA replication. Furthermore, cells lacking both Exo1 and Tel1 activities exhibit sustained checkpoint activation in the presence of CPT, indicating that Tel1 and Exo1 limit the activation of a Mec1-dependent checkpoint. The absence of Tel1 or its kinase activity enhances recombination between inverted DNA repeats induced by replication fork blockage in an Exo1-dependent manner. Thus, we propose that Exo1 processes intermediates arising at stalled forks in tel1 mutants to promote DNA replication recovery and cell survival.
- Published
- 2024
7. Rif2 interaction with Rad50 counteracts Tel1 functions in checkpoint signalling and DNA tethering by releasing Tel1 from MRX binding
- Author
-
Pizzul, Paolo, primary, Casari, Erika, additional, Rinaldi, Carlo, additional, Gnugnoli, Marco, additional, Mangiagalli, Marco, additional, Tisi, Renata, additional, and Longhese, Maria Pia, additional
- Published
- 2024
- Full Text
- View/download PDF
8. The Ku complex promotes DNA end-bridging and this function is antagonized by Tel1/ATM kinase
- Author
-
Rinaldi, Carlo, primary, Pizzul, Paolo, additional, Casari, Erika, additional, Mangiagalli, Marco, additional, Tisi, Renata, additional, and Longhese, Maria Pia, additional
- Published
- 2023
- Full Text
- View/download PDF
9. To Fix or Not to Fix: Maintenance of Chromosome Ends Versus Repair of DNA Double-Strand Breaks
- Author
-
Casari, Erika, primary, Gnugnoli, Marco, additional, Rinaldi, Carlo, additional, Pizzul, Paolo, additional, Colombo, Chiara Vittoria, additional, Bonetti, Diego, additional, and Longhese, Maria Pia, additional
- Published
- 2022
- Full Text
- View/download PDF
10. The DNA damage checkpoint: A tale from budding yeast
- Author
-
Pizzul, Paolo, primary, Casari, Erika, additional, Gnugnoli, Marco, additional, Rinaldi, Carlo, additional, Corallo, Flavio, additional, and Longhese, Maria Pia, additional
- Published
- 2022
- Full Text
- View/download PDF
11. Resection of DNA double-strand breaks: novel regulatory mechanisms by checkpoint proteins and chromatin remodelers
- Author
-
CLERICI, MICHELA, Casari, E, LONGHESE, MARIA PIA, CASARI, ERIKA, CLERICI, MICHELA, Casari, E, LONGHESE, MARIA PIA, and CASARI, ERIKA
- Abstract
L'instabilità genomica è una delle caratteristiche delle cellule tumorali e può essere dovuta a difetti nella riparazione dei danni al DNA. Tra le differenti tipologie di danno al DNA, le rotture della doppia elica di DNA sono lesioni citotossiche che devono essere riparate per garantire stabilità genomica ed evitare la morte cellulare. Le cellule eucariotiche affrontano questi danni attivando una risposta con differenti vie molecolari. Tra esse il meccanismo NHEJ lega direttamente le estremità rotte del DNA. Oppure il meccanismo HR utilizza il cromatidio fratello/il cromosoma omologo come templato per riparare la rottura. HR è avviata dalla degradazione nucleolitica (resection) delle estremità 5' del DSB. La resection è un processo a due fasi: la prima fase, short-range, è catalizzata dal complesso MRX/MRN che, insieme a Sae2/CtIP catalizza un taglio endonucleolitico alle estremità 5’ del DNA rotto. Dopo di che, la seconda fase, long-range, prevede l’intervento delle nucleasi Exo1 e Dna2/Sgs1. Esse sono necessarie per generare code di 3’ssDNA. In seguito a una rottura della doppia elica di DNA, le cellule attivano anche un’altra via chiamata checkpoint da danno al DNA, che coordina la riparazione del danno con la progressione del ciclo cellulare. Tra i principali attori del checkpoint ci sono le chinasi Mec1/ATR e Tel1/ATM. Tel1 riconosce le rotture del doppio filamento di DNA non processate, mentre Mec1 è attivato dal DNA a singolo filamento, prodotto dal processo di resection. Una volta stimolate, queste due chinasi apicali attivano per fosforilazione le chinasi effettrici Rad53/CHK2 e Chk1/CHK1. Questa attivazione richiede anche la proteina conservata Rad9/53BP1 la cui associazione al DNA coinvolge diverse vie. Resta da determinare come la short-range resection sia regolata e contribuisca all'attivazione del checkpoint. In questa tesi, ho contribuito a dimostrare che l’inibizione della long-range resection induce una risposta di checkpoint che dipende, Genome instability is one of the hallmarks of cancer cells and can be due to DNA repair defects. Among different types of DNA damage, DNA DSBs are cytotoxic lesions that must be repaired to ensure genomic stability and avoid cell death. Eukaryotic cells deal with DSBs by activating the DNA damage response, that comprises pathways devoted to repair DNA breaks. DSBs can be repaired by NHEJ, which directly ligates the broken DNA ends, or by HR, which uses sister chromatids/homologous chromosomes as a template to repair the DNA break. HR is initiated by nucleolytic degradation (resection) of the 5’-terminated strands at both DSB ends. DSB resection is a two-step process, in which an initial short-range step is catalyzed by Mre11-Rad50-Xrs2/NBS1 (MRX/MRN) complex that, together with Sae2 (CtIP in mammals), catalyzes an endonucleolytic cleavage of the 5’strands. Then, a long-range resection step is carried out by the nucleases Exo1 and Dna2/Sgs1 to generate long 3’ssDNA tails. The DDR comprises also surveillance mechanisms, called DNA damage checkpoint, that couple DSB repair with cell cycle progression. Major checkpoint players include the apical protein kinases Mec1/ATR and Tel1/ATM. Tel1 recognizes unprocessed DSBs, while Mec1 is activated by RPA-coated ssDNA that is generated during the resection process. Once activated, these protein kinases activate by phosphorylation the effector kinases Rad53/CHK2 and Chk1/CHK1. This activation requires the conserved adaptor protein Rad9/53BP1, whose association to chromatin involves multiple pathways. How short-range resection is regulated and contributes to checkpoint activation remains to be determined. In this thesis, I contributed to show that abrogation of long-range resection induces a checkpoint response that depends on the checkpoint complex 9-1-1, which recruits Rad9 at damaged DNA. Furthermore, the 9-1-1 complex, independently of Rad9, restricts short-range resection by negatively regulating Mre11 nuclease. We propose t
- Published
- 2022
12. The DNA damage checkpoint: A tale from budding yeast
- Author
-
Pizzul, P, Casari, E, Gnugnoli, M, Rinaldi, C, Corallo, F, Longhese, M, Pizzul, Paolo, Casari, Erika, Gnugnoli, Marco, Rinaldi, Carlo, Corallo, Flavio, Longhese, Maria Pia, Pizzul, P, Casari, E, Gnugnoli, M, Rinaldi, C, Corallo, F, Longhese, M, Pizzul, Paolo, Casari, Erika, Gnugnoli, Marco, Rinaldi, Carlo, Corallo, Flavio, and Longhese, Maria Pia
- Abstract
Studies performed in the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe have led the way in defining the DNA damage checkpoint and in identifying most of the proteins involved in this regulatory network, which turned out to have structural and functional equivalents in humans. Subsequent experiments revealed that the checkpoint is an elaborate signal transduction pathway that has the ability to sense and signal the presence of damaged DNA and transduce this information to influence a multifaceted cellular response that is essential for cancer avoidance. This review focuses on the work that was done in Saccharomyces cerevisiae to articulate the checkpoint concept, to identify its players and the mechanisms of activation and deactivation.
- Published
- 2022
13. To Fix or Not to Fix: Maintenance of Chromosome Ends Versus Repair of DNA Double-Strand Breaks
- Author
-
Casari, E, Gnugnoli, M, Rinaldi, C, Pizzul, P, Colombo, C, Bonetti, D, Longhese, M, Casari, Erika, Gnugnoli, Marco, Rinaldi, Carlo, Pizzul, Paolo, Colombo, Chiara Vittoria, Bonetti, Diego, Longhese, Maria Pia, Casari, E, Gnugnoli, M, Rinaldi, C, Pizzul, P, Colombo, C, Bonetti, D, Longhese, M, Casari, Erika, Gnugnoli, Marco, Rinaldi, Carlo, Pizzul, Paolo, Colombo, Chiara Vittoria, Bonetti, Diego, and Longhese, Maria Pia
- Abstract
Early work by Muller and McClintock discovered that the physical ends of linear chromosomes, named telomeres, possess an inherent ability to escape unwarranted fusions. Since then, extensive research has shown that this special feature relies on specialized proteins and structural properties that confer identity to the chromosome ends, thus allowing cells to distinguish them from intrachromosomal DNA double-strand breaks. Due to the inability of conventional DNA replication to fully replicate the chromosome ends and the downregulation of telomerase in most somatic human tissues, telomeres shorten as cells divide and lose this protective capacity. Telomere attrition causes the activation of the DNA damage checkpoint that leads to a cell-cycle arrest and the entering of cells into a nondividing state, called replicative senescence, that acts as a barrier against tumorigenesis. However, downregulation of the checkpoint overcomes this barrier and leads to further genomic instability that, if coupled with re-stabilization of telomeres, can drive tumorigenesis. This review focuses on the key experiments that have been performed in the model organism Saccharomyces cerevisiae to uncover the mechanisms that protect the chromosome ends from eliciting a DNA damage response, the conservation of these pathways in mammals, as well as the consequences of their loss in human cancer.
- Published
- 2022
14. Resection of DNA double-strand breaks: novel regulatory mechanisms by checkpoint proteins and chromatin remodelers
- Author
-
CASARI, ERIKA, Casari, E, and LONGHESE, MARIA PIA
- Subjects
Cromatina ,Checkpoint ,Danno al DNA ,S. cerevisiae ,DNA damage ,BIO/18 - GENETICA ,Resection ,Chromatin - Abstract
L'instabilità genomica è una delle caratteristiche delle cellule tumorali e può essere dovuta a difetti nella riparazione dei danni al DNA. Tra le differenti tipologie di danno al DNA, le rotture della doppia elica di DNA sono lesioni citotossiche che devono essere riparate per garantire stabilità genomica ed evitare la morte cellulare. Le cellule eucariotiche affrontano questi danni attivando una risposta con differenti vie molecolari. Tra esse il meccanismo NHEJ lega direttamente le estremità rotte del DNA. Oppure il meccanismo HR utilizza il cromatidio fratello/il cromosoma omologo come templato per riparare la rottura. HR è avviata dalla degradazione nucleolitica (resection) delle estremità 5' del DSB. La resection è un processo a due fasi: la prima fase, short-range, è catalizzata dal complesso MRX/MRN che, insieme a Sae2/CtIP catalizza un taglio endonucleolitico alle estremità 5’ del DNA rotto. Dopo di che, la seconda fase, long-range, prevede l’intervento delle nucleasi Exo1 e Dna2/Sgs1. Esse sono necessarie per generare code di 3’ssDNA. In seguito a una rottura della doppia elica di DNA, le cellule attivano anche un’altra via chiamata checkpoint da danno al DNA, che coordina la riparazione del danno con la progressione del ciclo cellulare. Tra i principali attori del checkpoint ci sono le chinasi Mec1/ATR e Tel1/ATM. Tel1 riconosce le rotture del doppio filamento di DNA non processate, mentre Mec1 è attivato dal DNA a singolo filamento, prodotto dal processo di resection. Una volta stimolate, queste due chinasi apicali attivano per fosforilazione le chinasi effettrici Rad53/CHK2 e Chk1/CHK1. Questa attivazione richiede anche la proteina conservata Rad9/53BP1 la cui associazione al DNA coinvolge diverse vie. Resta da determinare come la short-range resection sia regolata e contribuisca all'attivazione del checkpoint. In questa tesi, ho contribuito a dimostrare che l’inibizione della long-range resection induce una risposta di checkpoint che dipende dal complesso di checkpoint 9-1-1, che recluta Rad9 al DNA danneggiato. Inoltre, il complesso 9-1-1, indipendentemente da Rad9, limita la short-range resection regolando negativamente la nucleasi di MRX. La riparazione dei danni della doppia elica di DNA coinvolge anche la cromatina. Infatti, i genomi eucariotici sono compattati in una struttura cromatinica che limita l'accesso al DNA agli enzimi dedicati alla riparazione dei danni e solleva la questione di come avvenga la resection in tale contesto. È noto che la cromatina che affianca una rottura della doppia elica di DNA subisce ampie modificazioni da parte di una serie di rimodellatori della cromatina. Pertanto, nella seconda parte di questa tesi, ho studiato il ruolo della proteina di rimodellamento della cromatina Dpb4 nella riparazione dei danni. Nel lievito gemmante, la proteina conservata Dpb4 presenta un dominio istonico ed è condivisa da due complessi proteici: il rimodellatore della cromatina ISW2 e l'oloenzima DNA Pol epsilon. In S. cerevisiae, Dpb4 interagisce con Dls1 nel complesso ISW2 e con Dpb3 nel complesso Pol epsilon. In questa tesi ho dimostrato che Dpb4 promuove la rimozione degli istoni e la resection interagendo con Dls1 per facilitare l'associazione dell'ATPasi Isw2 al DNA danneggiato. Inoltre, promuove l'attivazione del checkpoint interagendo con Dpb3 per facilitare l'associazione di Rad9. Nell'ultima parte della tesi, per comprendere meglio il legame tra il rimodellamento della cromatina e la resection dei danni al DNA, ho contribuito a studiare il ruolo del rimodellatore della cromatina Chd1, frequentemente mutato nel cancro alla prostata. Abbiamo dimostrato che Chd1 partecipa in entrambe le fasi di resection, promuovendo l'associazione di MRX ed Exo1 alle estremità di una rottura del DNA. Inoltre, Chd1 consente la rimozione degli istoni vicino alle estremità del DNA danneggiato promuovendone la riparazione con il meccanismo di HR. Genome instability is one of the hallmarks of cancer cells and can be due to DNA repair defects. Among different types of DNA damage, DNA DSBs are cytotoxic lesions that must be repaired to ensure genomic stability and avoid cell death. Eukaryotic cells deal with DSBs by activating the DNA damage response, that comprises pathways devoted to repair DNA breaks. DSBs can be repaired by NHEJ, which directly ligates the broken DNA ends, or by HR, which uses sister chromatids/homologous chromosomes as a template to repair the DNA break. HR is initiated by nucleolytic degradation (resection) of the 5’-terminated strands at both DSB ends. DSB resection is a two-step process, in which an initial short-range step is catalyzed by Mre11-Rad50-Xrs2/NBS1 (MRX/MRN) complex that, together with Sae2 (CtIP in mammals), catalyzes an endonucleolytic cleavage of the 5’strands. Then, a long-range resection step is carried out by the nucleases Exo1 and Dna2/Sgs1 to generate long 3’ssDNA tails. The DDR comprises also surveillance mechanisms, called DNA damage checkpoint, that couple DSB repair with cell cycle progression. Major checkpoint players include the apical protein kinases Mec1/ATR and Tel1/ATM. Tel1 recognizes unprocessed DSBs, while Mec1 is activated by RPA-coated ssDNA that is generated during the resection process. Once activated, these protein kinases activate by phosphorylation the effector kinases Rad53/CHK2 and Chk1/CHK1. This activation requires the conserved adaptor protein Rad9/53BP1, whose association to chromatin involves multiple pathways. How short-range resection is regulated and contributes to checkpoint activation remains to be determined. In this thesis, I contributed to show that abrogation of long-range resection induces a checkpoint response that depends on the checkpoint complex 9-1-1, which recruits Rad9 at damaged DNA. Furthermore, the 9-1-1 complex, independently of Rad9, restricts short-range resection by negatively regulating Mre11 nuclease. We propose that 9-1-1, loaded at the leading edge of resection, plays a key function in regulating Mre11 nuclease and checkpoint activation once DSB resection is initiated. Repair of DSBs occurs in a chromatin context. In fact, eukaryotic genomes are compacted into chromatin, which restricts the access to DNA of the enzymes devoted to repair DNA DSBs and raises the question as to how DNA end resection occurs in the context of chromatin. For this reason, chromatin near DSBs undergoes extensive modifications by a series of conserved chromatin remodelers that are recruited to DNA DSBs. Thus, given the importance of chromatin remodeling in DSB repair, in the second part of this thesis, I investigated the role of the chromatin remodeling protein Dpb4 in DSB repair. Budding yeast Dpb4 (POLE3/CHRAC17 in mammals) is a highly conserved histone fold protein that is shared by two protein complexes: the chromatin remodeler ISW2/hCHRAC and the DNA polymerase epsilon holoenzyme. In S. cerevisiae, Dpb4 forms histone-like dimers with Dls1 in the ISW2 complex and with Dpb3 in the Pol epsilon complex. I showed that Dpb4 plays two functions in sensing and processing DSBs. It promotes histone removal and DSB resection by interacting with Dls1 to facilitate the association of the Isw2 ATPase to DSBs. Furthermore, it promotes checkpoint activation by interacting with Dpb3 to facilitate the association of the checkpoint protein Rad9 to DSBs. In the last part of my thesis, to better understand the link between chromatin remodeling and DNA end resection, I contributed to examine the role in DSB repair of the S. cerevisiae chromatin remodeler Chd1, whose human counterpart is frequently mutated in prostate cancer. We showed that Chd1 participates in both short- and long- range resection by promoting the association of MRX and Exo1 to the DSB ends. Furthermore, Chd1 reduces histone occupancy near the DSB ends and promotes DSB repair by HR. All these functions require Chd1 ATPase activity.
- Published
- 2022
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.