12 results on '"Crunfli F"'
Search Results
2. Diving into the proteomic atlas of SARS-CoV-2 infected cells.
- Author
-
Carregari VC, Reis-de-Oliveira G, Crunfli F, Smith BJ, de Souza GF, Muraro SP, Saia-Cereda VM, Vendramini PH, Baldasso PA, Silva-Costa LC, Zuccoli GS, Brandão-Teles C, Antunes A, Valença AF, Davanzo GG, Virgillio-da-Silva JV, Dos Reis Araújo T, Guimarães RC, Chaim FDM, Chaim EA, Kawagosi Onodera CM, Ludwig RG, Saccon TD, Damásio ARL, Leiria LOS, Vinolo MAR, Farias AS, Moraes-Vieira PM, Mori MA, Módena JLP, and Martins-de-Souza D
- Subjects
- Humans, Proteomics, Pandemics, SARS-CoV-2, COVID-19
- Abstract
The COVID-19 pandemic was initiated by the rapid spread of a SARS-CoV-2 strain. Though mainly classified as a respiratory disease, SARS-CoV-2 infects multiple tissues throughout the human body, leading to a wide range of symptoms in patients. To better understand how SARS-CoV-2 affects the proteome from cells with different ontologies, this work generated an infectome atlas of 9 cell models, including cells from brain, blood, digestive system, and adipocyte tissue. Our data shows that SARS-CoV-2 infection mainly trigger dysregulations on proteins related to cellular structure and energy metabolism. Despite these pivotal processes, heterogeneity of infection was also observed, highlighting many proteins and pathways uniquely dysregulated in one cell type or ontological group. These data have been made searchable online via a tool that will permit future submissions of proteomic data ( https://reisdeoliveira.shinyapps.io/Infectome_App/ ) to enrich and expand this knowledgebase., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
3. Induced-pluripotent stem cells and neuroproteomics as tools for studying neurodegeneration.
- Author
-
Brandão-Teles C, Zuccoli GS, de Moraes Vrechi TA, Ramos-da-Silva L, Santos AVS, Crunfli F, and Martins-de-Souza D
- Subjects
- Humans, Cellular Reprogramming, Induced Pluripotent Stem Cells metabolism, Induced Pluripotent Stem Cells pathology, Neurodegenerative Diseases metabolism
- Abstract
The investigation of neurodegenerative diseases advanced significantly with the advent of cell-reprogramming technology, leading to the creation of new models of human illness. These models, derived from induced pluripotent stem cells (iPSCs), facilitate the study of sporadic as well as hereditary diseases and provide a comprehensive understanding of the molecular mechanisms involved with neurodegeneration. Through proteomics, a quantitative tool capable of identifying thousands of proteins from small sample volumes, researchers have attempted to identify disease mechanisms by detecting differentially expressed proteins and proteoforms in disease models, biofluids, and postmortem brain tissue. The integration of these two technologies allows for the identification of novel pathological targets within the realm of neurodegenerative diseases. Here, we highlight studies from the past 5 years on the contributions of iPSCs within neuroproteomic investigations, which uncover the molecular mechanisms behind these illnesses., (© 2024 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.)
- Published
- 2024
- Full Text
- View/download PDF
4. SARS-CoV-2 uses CD4 to infect T helper lymphocytes.
- Author
-
Brunetti NS, Davanzo GG, de Moraes D, Ferrari AJR, Souza GF, Muraro SP, Knittel TL, Boldrini VO, Monteiro LB, Virgílio-da-Silva JV, Profeta GS, Wassano NS, Nunes Santos L, Carregari VC, Dias AHS, Veras FP, Tavares LA, Forato J, Castro IMS, Silva-Costa LC, Palma AC, Mansour E, Ulaf RG, Bernardes AF, Nunes TA, Ribeiro LC, Agrela MV, Moretti ML, Buscaratti LI, Crunfli F, Ludwig RG, Gerhardt JA, Munhoz-Alves N, Marques AM, Sesti-Costa R, Amorim MR, Toledo-Teixeira DA, Parise PL, Martini MC, Bispos-Dos-Santos K, Simeoni CL, Granja F, Silvestrini VC, de Oliveira EB, Faca VM, Carvalho M, Castelucci BG, Pereira AB, Coimbra LD, Dias MMG, Rodrigues PB, Gomes ABSP, Pereira FB, Santos LMB, Bloyet LM, Stumpf S, Pontelli MC, Whelan S, Sposito AC, Carvalho RF, Vieira AS, Vinolo MAR, Damasio A, Velloso L, Figueira ACM, da Silva LLP, Cunha TM, Nakaya HI, Marques-Souza H, Marques RE, Martins-de-Souza D, Skaf MS, Proenca-Modena JL, Moraes-Vieira PMM, Mori MA, and Farias AS
- Subjects
- Humans, CD8-Positive T-Lymphocytes, T-Lymphocytes, Helper-Inducer, Lung, SARS-CoV-2, COVID-19
- Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the agent of a major global outbreak of respiratory tract disease known as Coronavirus Disease 2019 (COVID-19). SARS-CoV-2 infects mainly lungs and may cause several immune-related complications, such as lymphocytopenia and cytokine storm, which are associated with the severity of the disease and predict mortality. The mechanism by which SARS-CoV-2 infection may result in immune system dysfunction is still not fully understood. Here, we show that SARS-CoV-2 infects human CD4
+ T helper cells, but not CD8+ T cells, and is present in blood and bronchoalveolar lavage T helper cells of severe COVID-19 patients. We demonstrated that SARS-CoV-2 spike glycoprotein (S) directly binds to the CD4 molecule, which in turn mediates the entry of SARS- CoV-2 in T helper cells. This leads to impaired CD4 T cell function and may cause cell death. SARS-CoV-2-infected T helper cells express higher levels of IL-10, which is associated with viral persistence and disease severity. Thus, CD4-mediated SARS-CoV-2 infection of T helper cells may contribute to a poor immune response in COVID-19 patients., Competing Interests: NB, GD, Dd, AF, GS, SM, TK, VB, LM, JV, GP, NW, LN, VC, AD, FV, LT, JF, IC, LS, AP, EM, RU, AB, TN, LR, MA, MM, LB, FC, RL, JG, NM, AM, RS, MA, DT, PP, MM, KB, CS, FG, VS, Ed, VF, MC, BC, AP, LC, MD, PR, AG, FP, LS, LB, SS, MP, SW, AS, RC, AV, MV, AD, LV, AF, Ld, TC, HN, HM, RM, DM, MS, JP, PM, MM, AF No competing interests declared, (© 2023, Brunetti, Davanzo, de Moraes et al.)- Published
- 2023
- Full Text
- View/download PDF
5. SARS-CoV-2 infection impacts carbon metabolism and depends on glutamine for replication in Syrian hamster astrocytes.
- Author
-
de Oliveira LG, de Souza Angelo Y, Yamamoto P, Carregari VC, Crunfli F, Reis-de-Oliveira G, Costa L, Vendramini PH, Duque ÉA, Dos Santos NB, Firmino EM, Paiva IM, Almeida GM, Sebollela A, Polonio CM, Zanluqui NG, de Oliveira MG, da Silva P, Davanzo GG, Ayupe MC, Salgado CL, de Souza Filho AF, de Araújo MV, Silva-Pereira TT, de Almeida Campos AC, Góes LGB, Dos Passos Cunha M, Caldini EG, D'Império Lima MR, Fonseca DM, de Sá Guimarães AM, Minoprio PC, Munhoz CD, Mori CMC, Moraes-Vieira PM, Cunha TM, Martins-de-Souza D, and Peron JPS
- Subjects
- Animals, Astrocytes, Carbon, Cricetinae, Disease Models, Animal, Glucose, Glutamine, Ketoglutaric Acids, Mesocricetus, Pyruvates, SARS-CoV-2, COVID-19
- Abstract
COVID-19 causes more than million deaths worldwide. Although much is understood about the immunopathogenesis of the lung disease, a lot remains to be known on the neurological impact of COVID-19. Here, we evaluated immunometabolic changes using astrocytes in vitro and dissected brain areas of SARS-CoV-2 infected Syrian hamsters. We show that SARS-CoV-2 alters proteins of carbon metabolism, glycolysis, and synaptic transmission, many of which are altered in neurological diseases. Real-time respirometry evidenced hyperactivation of glycolysis, further confirmed by metabolomics, with intense consumption of glucose, pyruvate, glutamine, and alpha ketoglutarate. Consistent with glutamine reduction, the blockade of glutaminolysis impaired viral replication and inflammatory response in vitro. SARS-CoV-2 was detected in vivo in hippocampus, cortex, and olfactory bulb of intranasally infected animals. Our data evidence an imbalance in important metabolic molecules and neurotransmitters in infected astrocytes. We suggest this may correlate with the neurological impairment observed during COVID-19, as memory loss, confusion, and cognitive impairment., (© 2022 International Society for Neurochemistry.)
- Published
- 2022
- Full Text
- View/download PDF
6. Zika Virus Strains and Dengue Virus Induce Distinct Proteomic Changes in Neural Stem Cells and Neurospheres.
- Author
-
Nascimento JM, Gouvêa-Junqueira D, Zuccoli GS, Pedrosa CDSG, Brandão-Teles C, Crunfli F, Antunes ASLM, Cassoli JS, Karmirian K, Salerno JA, de Souza GF, Muraro SP, Proenca-Módena JL, Higa LM, Tanuri A, Garcez PP, Rehen SK, and Martins-de-Souza D
- Subjects
- Humans, Proteomics, Dengue Virus, Neural Stem Cells metabolism, Zika Virus, Zika Virus Infection
- Abstract
Brain abnormalities and congenital malformations have been linked to the circulating strain of Zika virus (ZIKV) in Brazil since 2016 during the microcephaly outbreak; however, the molecular mechanisms behind several of these alterations and differential viral molecular targets have not been fully elucidated. Here we explore the proteomic alterations induced by ZIKV by comparing the Brazilian (Br ZIKV) and the African (MR766) viral strains, in addition to comparing them to the molecular responses to the Dengue virus type 2 (DENV). Neural stem cells (NSCs) derived from induced pluripotent stem (iPSCs) were cultured both as monolayers and in suspension (resulting in neurospheres), which were then infected with ZIKV (Br ZIKV or ZIKV MR766) or DENV to assess alterations within neural cells. Large-scale proteomic analyses allowed the comparison not only between viral strains but also regarding the two- and three-dimensional cellular models of neural cells derived from iPSCs, and the effects on their interaction. Altered pathways and biological processes were observed related to cell death, cell cycle dysregulation, and neurogenesis. These results reinforce already published data and provide further information regarding the biological alterations induced by ZIKV and DENV in neural cells., (© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
- Published
- 2022
- Full Text
- View/download PDF
7. Morphological, cellular, and molecular basis of brain infection in COVID-19 patients.
- Author
-
Crunfli F, Carregari VC, Veras FP, Silva LS, Nogueira MH, Antunes ASLM, Vendramini PH, Valença AGF, Brandão-Teles C, Zuccoli GDS, Reis-de-Oliveira G, Silva-Costa LC, Saia-Cereda VM, Smith BJ, Codo AC, de Souza GF, Muraro SP, Parise PL, Toledo-Teixeira DA, Santos de Castro ÍM, Melo BM, Almeida GM, Firmino EMS, Paiva IM, Silva BMS, Guimarães RM, Mendes ND, Ludwig RL, Ruiz GP, Knittel TL, Davanzo GG, Gerhardt JA, Rodrigues PB, Forato J, Amorim MR, Brunetti NS, Martini MC, Benatti MN, Batah SS, Siyuan L, João RB, Aventurato ÍK, Rabelo de Brito M, Mendes MJ, da Costa BA, Alvim MKM, da Silva Júnior JR, Damião LL, de Sousa IMP, da Rocha ED, Gonçalves SM, Lopes da Silva LH, Bettini V, Campos BM, Ludwig G, Tavares LA, Pontelli MC, Viana RMM, Martins RB, Vieira AS, Alves-Filho JC, Arruda E, Podolsky-Gondim GG, Santos MV, Neder L, Damasio A, Rehen S, Vinolo MAR, Munhoz CD, Louzada-Junior P, Oliveira RD, Cunha FQ, Nakaya HI, Mauad T, Duarte-Neto AN, Ferraz da Silva LF, Dolhnikoff M, Saldiva PHN, Farias AS, Cendes F, Moraes-Vieira PMM, Fabro AT, Sebollela A, Proença-Modena JL, Yasuda CL, Mori MA, Cunha TM, and Martins-de-Souza D
- Subjects
- Astrocytes pathology, Astrocytes virology, Humans, Post-Acute COVID-19 Syndrome, Brain pathology, Brain virology, COVID-19 complications, COVID-19 pathology, Central Nervous System Viral Diseases etiology, Central Nervous System Viral Diseases pathology, SARS-CoV-2
- Abstract
Although increasing evidence confirms neuropsychiatric manifestations associated mainly with severe COVID-19 infection, long-term neuropsychiatric dysfunction (recently characterized as part of "long COVID-19" syndrome) has been frequently observed after mild infection. We show the spectrum of cerebral impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, ranging from long-term alterations in mildly infected individuals (orbitofrontal cortical atrophy, neurocognitive impairment, excessive fatigue and anxiety symptoms) to severe acute damage confirmed in brain tissue samples extracted from the orbitofrontal region (via endonasal transethmoidal access) from individuals who died of COVID-19. In an independent cohort of 26 individuals who died of COVID-19, we used histopathological signs of brain damage as a guide for possible SARS-CoV-2 brain infection and found that among the 5 individuals who exhibited those signs, all of them had genetic material of the virus in the brain. Brain tissue samples from these five patients also exhibited foci of SARS-CoV-2 infection and replication, particularly in astrocytes. Supporting the hypothesis of astrocyte infection, neural stem cell-derived human astrocytes in vitro are susceptible to SARS-CoV-2 infection through a noncanonical mechanism that involves spike-NRP1 interaction. SARS-CoV-2-infected astrocytes manifested changes in energy metabolism and in key proteins and metabolites used to fuel neurons, as well as in the biogenesis of neurotransmitters. Moreover, human astrocyte infection elicits a secretory phenotype that reduces neuronal viability. Our data support the model in which SARS-CoV-2 reaches the brain, infects astrocytes, and consequently, leads to neuronal death or dysfunction. These deregulated processes could contribute to the structural and functional alterations seen in the brains of COVID-19 patients.
- Published
- 2022
- Full Text
- View/download PDF
8. Impact of Microbiota Depletion by Antibiotics on SARS-CoV-2 Infection of K18-hACE2 Mice.
- Author
-
Rodrigues PB, Gomes GF, Angelim MKSC, Souza GF, Muraro SP, Toledo-Teixeira DA, Rattis BAC, Passos AS, Pral LP, de Rezende Rodovalho V, Dos Santos P Gomes AB, Matheus VA, Antunes ASLM, Crunfli F, Antunes KH, de Souza APD, Consonni SR, Leiria LO, Alves-Filho JC, Cunha TM, Moraes-Vieira PMM, Proença-Módena JL, and R Vinolo MA
- Subjects
- Angiotensin-Converting Enzyme 2, Animals, Anti-Bacterial Agents pharmacology, Anti-Bacterial Agents therapeutic use, Disease Models, Animal, Melphalan, Mice, Mice, Transgenic, Peptidyl-Dipeptidase A metabolism, SARS-CoV-2, gamma-Globulins, Microbiota, COVID-19 Drug Treatment
- Abstract
Clinical and experimental data indicate that severe acute respiratory syndrome coronavirus (SARS-CoV)-2 infection is associated with significant changes in the composition and function of intestinal microbiota. However, the relevance of these effects for SARS-CoV-2 pathophysiology is unknown. In this study, we analyzed the impact of microbiota depletion after antibiotic treatment on the clinical and immunological responses of K18-hACE2 mice to SARS-CoV-2 infection. Mice were treated with a combination of antibiotics (kanamycin, gentamicin, metronidazole, vancomycin, and colistin, Abx) for 3 days, and 24 h later, they were infected with SARS-CoV-2 B lineage. Here, we show that more than 80% of mice succumbed to infection by day 11 post-infection. Treatment with Abx had no impact on mortality. However, Abx-treated mice presented better clinical symptoms, with similar weight loss between infected-treated and non-treated groups. We observed no differences in lung and colon histopathological scores or lung, colon, heart, brain and kidney viral load between groups on day 5 of infection. Despite some minor differences in the expression of antiviral and inflammatory markers in the lungs and colon, no robust change was observed in Abx-treated mice. Together, these findings indicate that microbiota depletion has no impact on SARS-CoV-2 infection in mice.
- Published
- 2022
- Full Text
- View/download PDF
9. What Can We Learn from Animal Models to Study Schizophrenia?
- Author
-
Crunfli F, Brandão-Teles C, Zuccoli GS, Chaves Filho AJM, Vieira GM, Silva-Amaral D, Crippa JA, Pedrazzi JFC, Macêdo DS, Del-Bel E, and Gomes FV
- Subjects
- Animals, Attention, Disease Models, Animal, Dopamine chemistry, Humans, Models, Animal, Proteomics, Schizophrenia diagnosis
- Abstract
Schizophrenia is a complex and heterogeneous neurodevelopmental psychiatric disorder characterized by a variety of symptoms classically grouped into three main domains: positive (hallucinations, delusions, and thought disorder) and negative symptoms (social withdrawal, lack of affect) and cognitive dysfunction (attention, working and episodic memory functions, and processing speed). This disorder places an immense emotional and economic pressure on the individual and society-at-large. Although the etiology of schizophrenia is not completely known, it is proposed to involve abnormalities in neurodevelopmental processes and dysregulation in the signaling mediated by several neurotransmitters, such as dopamine, glutamate, and GABA. Preclinical research using animal models are essential in our understanding of disease development and pathology as well as the discovery and advance of novel treatment choices. Here we describe rodent models for studying schizophrenia, including those based on the effects of drugs (pharmacological models), neurodevelopmental disruption, demyelination, and genetic alterations. The advantages and limitations of such models are highlighted. We also discussed the great potential of proteomic technologies in unraveling the molecular mechanism of schizophrenia through animal models., (© 2022. The Author(s), under exclusive license to Springer Nature Switzerland AG.)
- Published
- 2022
- Full Text
- View/download PDF
10. Modeling Schizophrenia In Vitro: Challenges and Insights on Studying Brain Cells.
- Author
-
Brandão-Teles C, Zuccoli GS, Smith BJ, Vieira GM, and Crunfli F
- Subjects
- Brain, Cell Culture Techniques methods, Humans, Neurons, Induced Pluripotent Stem Cells, Schizophrenia genetics
- Abstract
One of the challenges in studying neuropsychiatric disorders is the difficulty in accessing brain tissue from living patients. Schizophrenia is a chronic mental illness that affects 1% of the population worldwide, and its development stems from genetic and environmental factors. In order to better understand the pathophysiology underlying schizophrenia, the development of efficient in vitro methods to model this disorder has been required. In addition to several in vitro models, induced pluripotent stem cells (iPSCs) arose as a powerful tool, enabling access to the genetic background of the donor. Moreover, genetic modification of these cells can improve studies of specific dysfunctions observed in the pathophysiology of several neuropsychiatric disorders, not only schizophrenia. Here, we summarize which in vitro models are currently available and their applications in schizophrenia research, describing their advantages and limitations. These technologies in the cell culture field hold great potential to contribute to a better understanding of the pathophysiology of schizophrenia in an integrated manner, in addition to testing potential therapeutic interventions based on the genetic background of the patient., (© 2022. The Author(s), under exclusive license to Springer Nature Switzerland AG.)
- Published
- 2022
- Full Text
- View/download PDF
11. Molecular Findings Guiding the Modulation of the Endocannabinoid System as a Potential Target to Treat Schizophrenia.
- Author
-
Zuccoli GS, Brandão-Teles C, Vieira GM, Gomes FV, and Crunfli F
- Subjects
- Brain metabolism, Humans, Endocannabinoids metabolism, Schizophrenia drug therapy, Schizophrenia genetics
- Abstract
Schizophrenia is a psychiatric disorder of neurodevelopmental origin that is thought to result from the combination of genetic and socioenvironmental factors. Several studies have linked the endocannabinoid system with the pathophysiology of schizophrenia. Here, we provide a brief overview of the role of the endocannabinoid system (ECS) in the context of biological processes relevant to schizophrenia, such as neurodevelopment, synaptic plasticity, and brain energy metabolism. We also discuss alterations related to the ECS in schizophrenia and current efforts in both in vivo and in vitro studies that have provided a better understanding of the functioning of this system in the context of the disorder. Finally, we highlighted the modulation of the ECS as a potential for discovering novel therapeutic targets, suggesting new avenues for future research in the field., (© 2022. The Author(s), under exclusive license to Springer Nature Switzerland AG.)
- Published
- 2022
- Full Text
- View/download PDF
12. 14-3-3 proteins at the crossroads of neurodevelopment and schizophrenia.
- Author
-
Antunes ASLM, Saia-Cereda VM, Crunfli F, and Martins-de-Souza D
- Subjects
- Brain, Humans, Neurogenesis, Neurons, 14-3-3 Proteins genetics, Schizophrenia genetics
- Abstract
The 14-3-3 family comprises multifunctional proteins that play a role in neurogenesis, neuronal migration, neuronal differentiation, synaptogenesis and dopamine synthesis. 14-3-3 members function as adaptor proteins and impact a wide variety of cellular and physiological processes involved in the pathophysiology of neurological disorders. Schizophrenia is a psychiatric disorder and knowledge about its pathophysiology is still limited. 14-3-3 have been proven to be linked with the dopaminergic, glutamatergic and neurodevelopmental hypotheses of schizophrenia. Further, research using genetic models has demonstrated the role played by 14-3-3 proteins in neurodevelopment and neuronal circuits, however a more integrative and comprehensive approach is needed for a better understanding of their role in schizophrenia. For instance, we still lack an integrated assessment of the processes affected by 14-3-3 proteins in the dopaminergic and glutamatergic systems. In this context, it is also paramount to understand their involvement in the biology of brain cells other than neurons. Here, we present previous and recent research that has led to our current understanding of the roles 14-3-3 proteins play in brain development and schizophrenia, perform an assessment of their functional protein association network and discuss the use of protein-protein interaction modulators to target 14-3-3 as a potential therapeutic strategy.
- Published
- 2022
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.