8 results on '"D, Perley"'
Search Results
2. SN 2020qlb: A hydrogen-poor superluminous supernova with well-characterized light curve undulations
- Author
-
S. L. West, R. Lunnan, C. M. B. Omand, T. Kangas, S. Schulze, N. L. Strotjohann, S. Yang, C. Fransson, J. Sollerman, D. Perley, L. Yan, T.-W. Chen, Z. H. Chen, K. Taggart, C. Fremling, J. S. Bloom, A. Drake, M. J. Graham, M. M. Kasliwal, R. Laher, M. S. Medford, J. D. Neill, R. Riddle, and D. Shupe
- Subjects
High Energy Astrophysical Phenomena (astro-ph.HE) ,Space and Planetary Science ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena - Abstract
SN\,2020qlb (ZTF20abobpcb) is a hydrogen-poor superluminous supernova (SLSN-I) that is among the most luminous (maximum M$_{g} = -22.25$ mag) and that has one of the longest rise times (77 days from explosion to maximum). We estimate the total radiated energy to be $>2.1\times10^{51}$ erg. SN\,2020qlb has a well-sampled light curve that exhibits clear near and post peak undulations, a phenomenon seen in other SLSNe, whose physical origin is still unknown. We discuss the potential power source of this immense explosion as well as the mechanisms behind its observed light curve undulations. We analyze photospheric spectra and compare them to other SLSNe-I. We constructed the bolometric light curve using photometry from a large data set of observations from the Zwicky Transient Facility (ZTF), Liverpool Telescope (LT), and Neil Gehrels Swift Observatory and compare it with radioactive, circumstellar interaction and magnetar models. Model residuals and light curve polynomial fit residuals are analyzed to estimate the undulation timescale and amplitude. We also determine host galaxy properties based on imaging and spectroscopy data, including a detection of the [O III]$\lambda$4363, auroral line, allowing for a direct metallicity measurement. We rule out the Arnett $^{56}$Ni decay model for SN\,2020qlb's light curve due to unphysical parameter results. Our most favored power source is the magnetic dipole spin-down energy deposition of a magnetar. Two to three near peak oscillations, intriguingly similar to those of SN\,2015bn, were found in the magnetar model residuals with a timescale of $32\pm6$ days and an amplitude of 6$\%$ of peak luminosity. We rule out centrally located undulation sources due to timescale considerations; and we favor the result of ejecta interactions with circumstellar material (CSM) density fluctuations as the source of the undulations., Comment: 22 pages, 25 figures, submitted to A&A
- Published
- 2023
- Full Text
- View/download PDF
3. Maximum luminosities of normal stripped-envelope supernovae are brighter than explosion models allow
- Author
-
J. Sollerman, S. Yang, D. Perley, S. Schulze, C. Fremling, M. Kasliwal, K. Shin, B. Racine, Centre de Physique des Particules de Marseille (CPPM), and Aix Marseille Université (AMU)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
surveys ,supernovae: general ,010308 nuclear & particles physics ,Space and Planetary Science ,0103 physical sciences ,Astronomy and Astrophysics ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,010303 astronomy & astrophysics ,01 natural sciences - Abstract
Context. Stripped-envelope supernovae (SE SNe) of Type Ib and Type Ic are thought to be the result of explosions of massive stars that have lost their outer envelopes. The favored explosion mechanism is via core-collapse, with the shock later revived by neutrino heating. However, there is an upper limit to the amount of radioactive 56Ni that such models can accommodate. Recent studies in the literature point to a tension between the maximum luminosity from such simulations and the observations. Aims. We used a well-characterized sample of SE SNe from the Zwicky Transient Facility (ZTF) Bright Transient Survey (BTS) to scrutinize the observational caveats regarding estimates of the maximum luminosity (and thus the amount of ejected radioactive nickel) for the sample members. Methods. We employed the strict selection criteria for the BTS to collect a sample of spectroscopically classified normal Type Ibc SNe, for which we used the ZTF light curves to determine the maximum luminosity. We culled the sample further based on data quality, shape of the light curves, distances, and colors. Then we examined the uncertainties that may affect the measurements. The methodology of the sample construction based on this BTS sample can be used for other future investigations. Results. We analyzed the observational data, consisting of optical light curves and spectra, for the selected sub-samples. In total, we used 129 Type Ib or Type Ic BTS SNe with an initial rough luminosity distribution peaking at Mr = −17.61 ± 0.72, and where 36% are apparently brighter than the theoretically predicted maximum brightness of Mr = −17.8. When we further culled this sample to ensure that the SNe are normal Type Ibc with good LC data within the Hubble flow, the sample of 94 objects gives Mr = −17.64 ± 0.54. A main uncertainty in absolute magnitude determinations for SNe is the host galaxy extinction correction, but the reddened objects only get more luminous after corrections. If we simply exclude red objects, or those with unusual or uncertain colors, then we are left with 14 objects at Mr = −17.90 ± 0.73, whereof a handful are most certainly brighter than the suggested theoretical limit. The main result of this study is thus that normal SNe Ibc do indeed reach luminosities above 1042.6 erg s−1, which is apparently in conflict with existing explosion models.
- Published
- 2022
- Full Text
- View/download PDF
4. A cost-effective sequencing method for genetic studies combining high-depth whole exome and low-depth whole genome.
- Author
-
Bhérer C, Eveleigh R, Trajanoska K, St-Cyr J, Paccard A, Nadukkalam Ravindran P, Caron E, Bader Asbah N, McClelland P, Wei C, Baumgartner I, Schindewolf M, Döring Y, Perley D, Lefebvre F, Lepage P, Bourgey M, Bourque G, Ragoussis J, Mooser V, and Taliun D
- Abstract
Whole genome sequencing (WGS) at high-depth (30X) allows the accurate discovery of variants in the coding and non-coding DNA regions and helps elucidate the genetic underpinnings of human health and diseases. Yet, due to the prohibitive cost of high-depth WGS, most large-scale genetic association studies use genotyping arrays or high-depth whole exome sequencing (WES). Here we propose a cost-effective method which we call "Whole Exome Genome Sequencing" (WEGS), that combines low-depth WGS and high-depth WES with up to 8 samples pooled and sequenced simultaneously (multiplexed). We experimentally assess the performance of WEGS with four different depth of coverage and sample multiplexing configurations. We show that the optimal WEGS configurations are 1.7-2.0 times cheaper than standard WES (no-plexing), 1.8-2.1 times cheaper than high-depth WGS, reach similar recall and precision rates in detecting coding variants as WES, and capture more population-specific variants in the rest of the genome that are difficult to recover when using genotype imputation methods. We apply WEGS to 862 patients with peripheral artery disease and show that it directly assesses more known disease-associated variants than a typical genotyping array and thousands of non-imputable variants per disease-associated locus., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
5. Transcriptional responses of cancer cells to heat shock-inducing stimuli involve amplification of robust HSF1 binding.
- Author
-
Dastidar SG, De Kumar B, Lauckner B, Parrello D, Perley D, Vlasenok M, Tyagi A, Koney NK, Abbas A, and Nechaev S
- Subjects
- Heat Shock Transcription Factors genetics, Heat Shock Transcription Factors metabolism, Transcription Factors metabolism, Heat-Shock Response genetics, Chromatin genetics, DNA-Binding Proteins metabolism, Neoplasms genetics
- Abstract
Responses of cells to stimuli are increasingly discovered to involve the binding of sequence-specific transcription factors outside of known target genes. We wanted to determine to what extent the genome-wide binding and function of a transcription factor are shaped by the cell type versus the stimulus. To do so, we induced the Heat Shock Response pathway in two different cancer cell lines with two different stimuli and related the binding of its master regulator HSF1 to nascent RNA and chromatin accessibility. Here, we show that HSF1 binding patterns retain their identity between basal conditions and under different magnitudes of activation, so that common HSF1 binding is globally associated with distinct transcription outcomes. HSF1-induced increase in DNA accessibility was modest in scale, but occurred predominantly at remote genomic sites. Apart from regulating transcription at existing elements including promoters and enhancers, HSF1 binding amplified during responses to stimuli may engage inactive chromatin., (© 2023. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
6. A rotating white dwarf shows different compositions on its opposite faces.
- Author
-
Caiazzo I, Burdge KB, Tremblay PE, Fuller J, Ferrario L, Gänsicke BT, Hermes JJ, Heyl J, Kawka A, Kulkarni SR, Marsh TR, Mróz P, Prince TA, Richer HB, Rodriguez AC, van Roestel J, Vanderbosch ZP, Vennes S, Wickramasinghe D, Dhillon VS, Littlefair SP, Munday J, Pelisoli I, Perley D, Bellm EC, Breedt E, Brown AJ, Dekany R, Drake A, Dyer MJ, Graham MJ, Green MJ, Laher RR, Kerry P, Parsons SG, Riddle RL, Rusholme B, and Sahman DI
- Abstract
White dwarfs, the extremely dense remnants left behind by most stars after their death, are characterized by a mass comparable to that of the Sun compressed into the size of an Earth-like planet. In the resulting strong gravity, heavy elements sink towards the centre and the upper layer of the atmosphere contains only the lightest element present, usually hydrogen or helium
1,2 . Several mechanisms compete with gravitational settling to change a white dwarf's surface composition as it cools3 , and the fraction of white dwarfs with helium atmospheres is known to increase by a factor of about 2.5 below a temperature of about 30,000 kelvin4-8 ; therefore, some white dwarfs that appear to have hydrogen-dominated atmospheres above 30,000 kelvin are bound to transition to be helium-dominated as they cool below it. Here we report observations of ZTF J203349.8+322901.1, a transitioning white dwarf with two faces: one side of its atmosphere is dominated by hydrogen and the other one by helium. This peculiar nature is probably caused by the presence of a small magnetic field, which creates an inhomogeneity in temperature, pressure or mixing strength over the surface9-11 . ZTF J203349.8+322901.1 might be the most extreme member of a class of magnetic, transitioning white dwarfs-together with GD 323 (ref.12 ), a white dwarf that shows similar but much more subtle variations. This class of white dwarfs could help shed light on the physical mechanisms behind the spectral evolution of white dwarfs., (© 2023. The Author(s), under exclusive licence to Springer Nature Limited.)- Published
- 2023
- Full Text
- View/download PDF
7. RSV-induced expanded ciliated cells contribute to bronchial wall thickening.
- Author
-
Talukdar SN, Osan J, Ryan K, Grove B, Perley D, Kumar BD, Yang S, Dallman S, Hollingsworth L, Bailey KL, and Mehedi M
- Subjects
- Child, Infant, Adult, Humans, Epithelial Cells, Epithelium, Inflammation, Respiratory Syncytial Virus, Human physiology, Respiratory Syncytial Virus Infections
- Abstract
Viral infection, particularly respiratory syncytial virus (RSV), causes inflammation in the bronchiolar airways (bronchial wall thickening, also known as bronchiolitis). This bronchial wall thickening is a common pathophysiological feature in RSV infection, but it causes more fatalities in infants than in children and adults. However, the molecular mechanism of RSV-induced bronchial wall thickening remains unknown, particularly in healthy adults. Using highly differentiated pseudostratified airway epithelium generated from primary human bronchial epithelial cells, we revealed RSV-infects primarily ciliated cells. The infected ciliated cells expanded substantially without compromising epithelial membrane integrity and ciliary functions and contributed to the increased height of the airway epithelium. Furthermore, we identified multiple factors, e.g., cytoskeletal (ARP2/3-complex-driven actin polymerization), immunological (IP10/CXCL10), and viral (NS2), contributing to RSV-induced uneven epithelium height increase in vitro. Thus, RSV-infected expanded cells contribute to a noncanonical inflammatory phenotype, which contributes to bronchial wall thickening in the airway, and is termed cytoskeletal inflammation., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023. Published by Elsevier B.V.)
- Published
- 2023
- Full Text
- View/download PDF
8. Uncovering a population of gravitational lens galaxies with magnified standard candle SN Zwicky.
- Author
-
Goobar A, Johansson J, Schulze S, Arendse N, Carracedo AS, Dhawan S, Mörtsell E, Fremling C, Yan L, Perley D, Sollerman J, Joseph R, Hinds KR, Meynardie W, Andreoni I, Bellm E, Bloom J, Collett TE, Drake A, Graham M, Kasliwal M, Kulkarni SR, Lemon C, Miller AA, Neill JD, Nordin J, Pierel J, Richard J, Riddle R, Rigault M, Rusholme B, Sharma Y, Stein R, Stewart G, Townsend A, Vinko J, Wheeler JC, and Wold A
- Abstract
Detecting gravitationally lensed supernovae is among the biggest challenges in astronomy. It involves a combination of two very rare phenomena: catching the transient signal of a stellar explosion in a distant galaxy and observing it through a nearly perfectly aligned foreground galaxy that deflects light towards the observer. Here we describe how high-cadence optical observations with the Zwicky Transient Facility, with its unparalleled large field of view, led to the detection of a multiply imaged type Ia supernova, SN Zwicky, also known as SN 2022qmx. Magnified nearly 25-fold, the system was found thanks to the standard candle nature of type Ia supernovae. High-spatial-resolution imaging with the Keck telescope resolved four images of the supernova with very small angular separation, corresponding to an Einstein radius of only θ
E = 0.167″ and almost identical arrival times. The small θE and faintness of the lensing galaxy are very unusual, highlighting the importance of supernovae to fully characterize the properties of galaxy-scale gravitational lenses, including the impact of galaxy substructures., Competing Interests: Competing interestsThe authors declare no competing interests., (© The Author(s) 2023, corrected publication 2023.)- Published
- 2023
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.