1. Magnetic memory and distinct spin populations in ferromagnetic Co3Sn2S2
- Author
-
Charles Menil, Brigitte Leridon, Antonella Cavanna, Ulf Gennser, Dominique Mailly, Linchao Ding, Xiaokang Li, Zengwei Zhu, Benoît Fauqué, and Kamran Behnia
- Subjects
Materials of engineering and construction. Mechanics of materials ,TA401-492 ,Atomic physics. Constitution and properties of matter ,QC170-197 - Abstract
Abstract Co3Sn2S2, a ferromagnetic Weyl semi-metal with Co atoms on a kagome lattice, has generated much recent attention. Experiments have identified a temperature scale below the Curie temperature. Here, we find that this magnet keeps a memory, when not exposed to a magnetic field sufficiently large to erase it. We identify the driver of this memory effect as a small secondary population of spins, whose coercive field is significantly larger than that of the majority spins. The shape of the magnetization hysteresis curve has a threshold magnetic field set by the demagnetizing factor. These two field scales set the hitherto unidentified temperature scale, which is not a thermodynamic phase transition, but a crossing point between meta-stable boundaries. Global magnetization is well-defined, even when it is non-uniform, but drastic variations in local magnetization point to a coarse energy landscape, with the thermodynamic limit not achieved at micrometer length scales.
- Published
- 2025
- Full Text
- View/download PDF