1. Efficient Isolation of Cellulose Nanocrystals from Seaweed Waste via a Radiation Process and Their Conversion to Porous Nanocarbon for Energy Storage System.
- Author
-
Jeong, Jin-Ju, Kim, Jae-Hun, and Lee, Jung-Soo
- Abstract
This article presents an efficient method for isolating cellulose nanocrystals (CNcs) from seaweed waste using a combination of electron beam (E-beam) irradiation and acid hydrolysis. This approach not only reduces the chemical consumption and processing time, but also improves the crystallinity and yield of the CNcs. The isolated CNcs were then thermally annealed at 800 and 1000 °C to produce porous nanocarbon materials, which were characterized using scanning electron microscopy, X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy to assess their structural and chemical properties. Electrochemical testing of electrical double-layer capacitors demonstrated that nanocarbon materials derived from seaweed waste-derived CNcs annealed at 1000 exhibited superior capacitance and stability. This performance is attributed to the formation of a highly ordered graphitic structure with a mesoporous architecture, which facilitates efficient ion transport and enhanced electrolyte accessibility. These findings underscore the potential of seaweed waste-derived nanocarbon as a sustainable and high-performance material for energy storage applications, offering a promising alternative to conventional carbon sources. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF