1. SARS-CoV-2 Protein Nanoparticle Vaccines Formed In Situ From Lyophilized Lipids.
- Author
-
Jiao Y, Huang WC, Chiem K, Song Y, Sun J, Chothe SK, Zhou S, Luo Y, Mabrouk MT, Ortega J, Kuchipudi SV, Martinez-Sobrido L, and Lovell JF
- Subjects
- Animals, Mice, Nanovaccines, SARS-CoV-2, Escherichia coli, Liposomes, Lipids, COVID-19 Vaccines, COVID-19 prevention & control
- Abstract
The receptor binding domain (RBD) of the SARS-CoV-2 Spike (S) glycoprotein is an appealing immunogen, but associated vaccine approaches must overcome the hapten-like nature of the compact protein and adapt to emerging variants with evolving RBD sequences. Here, a vaccine manufacturing methodology is proposed comprising a sterile-filtered freeze-dried lipid cake formulation that can be reconstituted with liquid proteins to instantaneously form liposome-displayed protein nanoparticles. Mannitol is used as a bulking agent and a small amount of Tween-80 surfactant is required to achieve reconstituted submicron particles that do not precipitate prior to usage. The lipid particles include an E. coli-derived monophosphoryl lipid A (EcML) for immunogenicity, and cobalt porphyrin-phospholipid (CoPoP) for antigen display. Reconstitution of the lipid cake with aqueous protein results in rapid conversion of the RBD into intact liposome-bound format prior to injection. Protein particles can readily be formed with sequent-divergent RBD proteins derived from the ancestral or Omicron strains. Immunization of mice elicits antibodies that neutralize respective viral strains. When K18-hACE2 transgenic mice are immunized and challenged with ancestral SARS-CoV-2 or the Omicron BA.5 variant, both liquid liposomes displaying the RBD and rapid reconstituted particles protect mice from infection, as measured by the viral load in the lungs and nasal turbinates., (© 2023 Wiley-VCH GmbH.)
- Published
- 2024
- Full Text
- View/download PDF