1. Flow dynamics in a model of a dilated thoracic aorta prior to and following prosthetic replacement
- Author
-
Pier Giuseppe Ledda, Maria Grazia Badas, Gildo Matta, and Giorgio Querzoli
- Subjects
Fluid Flow and Transfer Processes ,General Engineering ,Computational Mechanics ,Condensed Matter Physics - Abstract
Abstract We numerically investigate the flow dynamics in a model of a dilated thoracic aorta, and compare the flow features with the case of a prosthetic replacement in its ascending part. The flow is characterized by an inlet jet which impacts the aortic walls and sweeps toward the aortic arch. Secondary flows generated by the transvalvular jet evolve downstream into a helical flow. The small curvature radius at the end of the aortic arch induces flow separation and vortex shedding in the initial part of the descending aorta, during the systole. The implantation of a prosthesis determines several modifications in the global and local flow patterns. An increase of the pulse wave velocity in the aorta leads to larger pressures inside the vessel, due to the geometrical and rigidity modifications. The sweeping jet is more aligned along the axial direction and propagates faster along the aortic arch. Consequently, a stronger separation of the flow downstream of the aortic arch is observed. By also exploiting manifold analysis, we identify regions characterized by near-wall disordered flows which may present intense accumulation and drop of concentration of biochemicals. These regions are localized downstream of the prosthetic replacement, in the aortic arch, and may be more prone to a new emergence of vessel dilation. Graphical Abstract
- Published
- 2023
- Full Text
- View/download PDF