1. 3D cell-printing of gradient multi-tissue interfaces for rotator cuff regeneration
- Author
-
Suhun Chae, Uijung Yong, Wonbin Park, Yoo-mi Choi, In-Ho Jeon, Homan Kang, Jinah Jang, Hak Soo Choi, and Dong-Woo Cho
- Subjects
3D cell-printing ,Tissue-specific bioink ,Gradient tissue scaffolds ,Near-infrared fluorophores ,Rotator cuff repair ,Materials of engineering and construction. Mechanics of materials ,TA401-492 ,Biology (General) ,QH301-705.5 - Abstract
Owing to the prevalence of rotator cuff (RC) injuries and suboptimal healing outcome, rapid and functional regeneration of the tendon–bone interface (TBI) after RC repair continues to be a major clinical challenge. Given the essential role of the RC in shoulder movement, the engineering of biomimetic multi-tissue constructs presents an opportunity for complex TBI reconstruction after RC repair. Here, we propose a gradient cell-laden multi-tissue construct combined with compositional gradient TBI-specific bioinks via 3D cell-printing technology. In vitro studies demonstrated the capability of a gradient scaffold system in zone-specific inducibility and multi-tissue formation mimicking TBI. The regenerative performance of the gradient scaffold on RC regeneration was determined using a rat RC repair model. In particular, we adopted nondestructive, consecutive, and tissue-targeted near-infrared fluorescence imaging to visualize the direct anatomical change and the intricate RC regeneration progression in real time in vivo. Furthermore, the 3D cell-printed implant promotes effective restoration of shoulder locomotion function and accelerates TBI healing in vivo. In summary, this study identifies the therapeutic contribution of cell-printed constructs towards functional RC regeneration, demonstrating the translational potential of biomimetic gradient constructs for the clinical repair of multi-tissue interfaces.
- Published
- 2023
- Full Text
- View/download PDF