1. AIM2 Targeting of Nuclear DNA Leakage in Dendritic Cells Exacerbates Vasculitis in a Murine Model of Kawasaki Disease.
- Author
-
Baatarjav C, Komada T, Gunji Y, Komori S, Aizawa H, Nagi-Miura N, Karasawa T, and Takahashi M
- Abstract
Kawasaki disease (KD) is an acute vasculitis that mostly affects children and is characterized by inflammation of medium-sized arteries, particularly the coronary arteries. The absent in melanoma 2 (AIM2) inflammasome senses cytosolic dsDNA and regulates IL-1β-driven inflammation. We investigated the role of AIM2 in Candida albicans water-soluble fraction (CAWS)-induced vasculitis in a murine model mimicking KD. Aim2
-/- mice exhibited reduced vasculitis, inflammatory cell infiltration, and vascular fibrosis in the aorta and coronary arteries. In addition, dsDNA damage was detected in Dectin-2+ cells infiltrating vasculitis areas. In vitro experiments showed that CAWS induced dsDNA damage in Dectin-2+ bone marrow-derived dendritic cells (BMDC) isolated from wild-type (WT) and Aim2-/- mice. Furthermore, CAWS induces nuclear membrane deformation and DNA leakage into the cytosol, leading to AIM2 inflammasome activation and subsequent IL-1β production in WT BMDC. These findings suggest that AIM2 inflammasome activation in dendritic cells, triggered by dsDNA damage and leakage, contributes to the development of CAWS-induced vasculitis, and provides important insights into the inflammatory mechanisms underlying KD.- Published
- 2025
- Full Text
- View/download PDF