1. Recent Developments on Processes for Recovery of Rhodium Metal from Spent Catalysts
- Author
-
Mingqi Jia, Guangshen Jiang, Hanchu Chen, Yue Pang, Fei Yuan, Zhen Zhang, Naiqian Miao, Chengzhuo Zheng, Jianhui Song, Yanyan Li, and Hui Wang
- Subjects
Rh catalyst ,recovery ,pyrometallurgical ,hydrometallurgical ,biosorption ,Chemical technology ,TP1-1185 ,Chemistry ,QD1-999 - Abstract
Rhodium (Rh) catalyst has played an indispensable role in many important industrial and technological applications due to its unique and valuable properties. Currently, Rh is considered as a strategic or critical metal as the scarce high-quality purity can only be supplemented by refining coarse ores with low content (2–10 ppm) and is far from meeting the fast-growing market demand. Nowadays, exploring new prospects has already become an urgent issue because of the gradual depletion of Rh resources, incidental pressure on environmental protection, and high market prices. Since waste catalyst materials, industrial equipment, and electronic instruments contain Rh with a higher concentration than that of natural minerals, recovering Rh from scrap not only offers an additional source to satisfy market demand but also reduces the risk of ore over-exploitation. Therefore, the recovery of Rh-based catalysts from scrap is of great significance. This review provides an overview of the Rh metal recovery from spent catalysts. The characteristics, advantages and disadvantages of several current recovery processes, including pyrometallurgy, hydrometallurgy, and biosorption technology, are presented and compared. Among them, the hydrometallurgical process is commonly used for Rh recovery from auto catalysts due to its technological simplicity, low cost, and short processing time, but the overall recovery rate is low due to its high remnant Rh within the insoluble residue and the unstable leaching. In contrast, higher Rh recovery and less effluent discharge can be ensured by a pyrometallurgical process which therefore is widely employed in industry to extract precious metals from spent catalysts. However, the related procedure is quite complex, leading to an expensive hardware investment, high energy consumption, long recovery cycles, and inevitable difficulties in controlling contamination in practice. Compared to conventional recovery methods, the biosorption process is considered to be a cost-effective biological route for Rh recovery owing to its intrinsic merits, e.g., low operation costs, small volume, and low amount of chemicals and biological sludge to be treated. Finally, we summarize the challenges and prospect of these three recovery processes in the hope that the community can gain more meaningful and comprehensive insights into Rh recovery.
- Published
- 2022
- Full Text
- View/download PDF