1. Hydration of blended ladle slag and calcium aluminate cement
- Author
-
Elijah Adesanya, Amarachi Ezu, Hoang Nguyen, Christine Rößler, Harisankar Sreenivasan, Katja Ohenoja, Paivo Kinnunen, and Mirja Illikainen
- Subjects
Calcium aluminate ,Ladle slag ,Mechanics of Materials ,Architecture ,High-alumina ,Blended cement ,Building and Construction ,Safety, Risk, Reliability and Quality ,Durability ,Thermodynamic modelling ,Civil and Structural Engineering - Abstract
Partial replacement and co-hydration of calcium aluminate cement (CAC) with ladle slag was investigated in this study as a pathway in valorizing the slag and reducing the economic cost of CAC. The impact of this replacement on the physical and microstructural properties were analysed using different techniques such as mechanical strength test, freeze-thaw, sulfate attack, XRD, SEM etc. Thermodynamic modelling was used to predict the phase assemblages of the blended cement using the hydration kinetics of the system. Experimental results showed the reference CAC mortar and the substituted mortar exhibited comparable strength gain at 7 and 28 days, and durability as measured by sulfate attack, abrasion, and freeze-thaw resistance. A low water-to-binder ratio (0.35) lessened the effect of conversion on the hydrates, as XRD showed metastable CAH₁₀ and C₂AH7.5 as the hydrates at 7, 28 and 60 days. This however can convert later to the thermodynamically stable phase C₃AH₆. Thermodynamic modelling suggests these two metastable phases as major binding phases, while Si-hydrogarnet and FeOOH appeared a minor trace in the binder. *Cement chemistry notation used, where C = CaO, A = Al₂O₃ and H = H₂O
- Published
- 2023
- Full Text
- View/download PDF