4 results on '"Hastie TJ"'
Search Results
2. Reorienting Latent Variable Modeling for Supervised Learning.
- Author
-
Jo B, Hastie TJ, Li Z, Youngstrom EA, Findling RL, and Horwitz SM
- Subjects
- Latent Class Analysis, Supervised Machine Learning
- Abstract
Despite its potentials benefits, using prediction targets generated based on latent variable (LV) modeling is not a common practice in supervised learning, a dominating framework for developing prediction models. In supervised learning, it is typically assumed that the outcome to be predicted is clear and readily available, and therefore validating outcomes before predicting them is a foreign concept and an unnecessary step. The usual goal of LV modeling is inference, and therefore using it in supervised learning and in the prediction context requires a major conceptual shift. This study lays out methodological adjustments and conceptual shifts necessary for integrating LV modeling into supervised learning. It is shown that such integration is possible by combining the traditions of LV modeling, psychometrics, and supervised learning. In this interdisciplinary learning framework, generating practical outcomes using LV modeling and systematically validating them based on clinical validators are the two main strategies. In the example using the data from the Longitudinal Assessment of Manic Symptoms (LAMS) Study, a large pool of candidate outcomes is generated by flexible LV modeling. It is demonstrated that this exploratory situation can be used as an opportunity to tailor desirable prediction targets taking advantage of contemporary science and clinical insights.
- Published
- 2023
- Full Text
- View/download PDF
3. Confounds in neuroimaging: A clear case of sex as a confound in brain-based prediction.
- Author
-
Weber KA 2nd, Teplin ZM, Wager TD, Law CSW, Prabhakar NK, Ashar YK, Gilam G, Banerjee S, Delp SL, Glover GH, Hastie TJ, and Mackey S
- Abstract
Muscle weakness is common in many neurological, neuromuscular, and musculoskeletal conditions. Muscle size only partially explains muscle strength as adaptions within the nervous system also contribute to strength. Brain-based biomarkers of neuromuscular function could provide diagnostic, prognostic, and predictive value in treating these disorders. Therefore, we sought to characterize and quantify the brain's contribution to strength by developing multimodal MRI pipelines to predict grip strength. However, the prediction of strength was not straightforward, and we present a case of sex being a clear confound in brain decoding analyses. While each MRI modality-structural MRI (i.e., gray matter morphometry), diffusion MRI (i.e., white matter fractional anisotropy), resting state functional MRI (i.e., functional connectivity), and task-evoked functional MRI (i.e., left or right hand motor task activation)-and a multimodal prediction pipeline demonstrated significant predictive power for strength ( R
2 = 0.108-0.536, p ≤ 0.001), after correcting for sex, the predictive power was substantially reduced ( R2 = -0.038-0.075). Next, we flipped the analysis and demonstrated that each MRI modality and a multimodal prediction pipeline could significantly predict sex (accuracy = 68.0%-93.3%, AUC = 0.780-0.982, p < 0.001). However, correcting the brain features for strength reduced the accuracy for predicting sex (accuracy = 57.3%-69.3%, AUC = 0.615-0.780). Here we demonstrate the effects of sex-correlated confounds in brain-based predictive models across multiple brain MRI modalities for both regression and classification models. We discuss implications of confounds in predictive modeling and the development of brain-based MRI biomarkers, as well as possible strategies to overcome these barriers., Competing Interests: Author SB was employed by General Electric Healthcare. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2022 Weber, Teplin, Wager, Law, Prabhakar, Ashar, Gilam, Banerjee, Delp, Glover, Hastie and Mackey.)- Published
- 2022
- Full Text
- View/download PDF
4. Principal curve approaches for inferring 3D chromatin architecture.
- Author
-
Tuzhilina E, Hastie TJ, and Segal MR
- Subjects
- Chromosomes, Genomics methods, Humans, Reproducibility of Results, Chromatin genetics, Genome
- Abstract
Three-dimensional (3D) genome spatial organization is critical for numerous cellular processes, including transcription, while certain conformation-driven structural alterations are frequently oncogenic. Genome architecture had been notoriously difficult to elucidate, but the advent of the suite of chromatin conformation capture assays, notably Hi-C, has transformed understanding of chromatin structure and provided downstream biological insights. Although many findings have flowed from direct analysis of the pairwise proximity data produced by these assays, there is added value in generating corresponding 3D reconstructions deriving from superposing genomic features on the reconstruction. Accordingly, many methods for inferring 3D architecture from proximity data have been advanced. However, none of these approaches exploit the fact that single chromosome solutions constitute a one-dimensional (1D) curve in 3D. Rather, this aspect has either been addressed by imposition of constraints, which is both computationally burdensome and cell type specific, or ignored with contiguity imposed after the fact. Here, we target finding a 1D curve by extending principal curve methodology to the metric scaling problem. We illustrate how this approach yields a sequence of candidate solutions, indexed by an underlying smoothness or degrees-of-freedom parameter, and propose methods for selection from this sequence. We apply the methodology to Hi-C data obtained on IMR90 cells and so are positioned to evaluate reconstruction accuracy by referencing orthogonal imaging data. The results indicate the utility and reproducibility of our principal curve approach in the face of underlying structural variation., (© The Author 2020. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2022
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.