14 results on '"Herget T"'
Search Results
2. Fiber-based biomaterial scaffolds for cell support towards the production of cultivated meat.
- Author
-
Li X, Sim D, Wang Y, Feng S, Longo B, Li G, Andreassen C, Hasturk O, Stout A, Yuen JSK Jr, Cai Y, Sanders E, Sylvia R, Hatz S, Olsen T, Herget T, Chen Y, and Kaplan DL
- Abstract
The in vitro production of animal-derived foods via cellular agriculture is emerging as a key solution to global food security challenges. Here, the potential for fiber-based scaffolds, including silk and cotton, in the cultivation of muscle cells for tissue formation was pursued. Mechanical properties and cytocompatibility with the mouse myoblast cell line C2C12 and immortalized bovine muscle satellite cells (iBSCs) were assessed, as well as pre-digestion options for the materials due to their resilience within the human digestive track. The fibers supported cell adhesion, proliferation, and guided muscle cell orientation, facilitating myotube formation per differentiation. A progressive increase in biomass was also documented. Interestingly, iBSC proliferation was enhanced with coatings of recombinant proteins while C2C12 cells showed minimal response. Thus, both cotton and silk yarns were suitable as fiber-based scaffolds towards cell supportive goals, suggesting an alternative path toward structured protein-rich foods via this initial stage of textile engineering for food. Biomass prediction models were generated, enabling forecasts of cell growth and maturation across various scaffold conditions and cell types. This capability enhances the precision of the cultivation process towards an engineering approach, building on the inherent benefits of hierarchical muscle tissue structure, but here via textile engineering with these initial muscle-coated edible fibers. Further, the approach offers to reduce costs by optimizing cultivation time and media needs. These approaches are part of a foundation for future scalable and sustainable cultivated meat production. STATEMENT OF SIGNIFICANCE: This research investigates the use of one-dimensional fiber-based scaffolds for cultivated meat production, contributing to advancements in cellular agriculture. It introduces a method to measure changes in biomass and scaffold degradation throughout the cultivation process. Additionally, our development of biomass prediction models improves the precision and predictability of cultivated meat production. This research not only aids in scaling up cultivated meats but also enhances the use of textile engineering techniques in tissue engineering, paving the way for producing complex, three-dimensional meat structures more sustainably., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
3. Next-generation phenotyping integrated in a national framework for patients with ultrarare disorders improves genetic diagnostics and yields new molecular findings.
- Author
-
Schmidt A, Danyel M, Grundmann K, Brunet T, Klinkhammer H, Hsieh TC, Engels H, Peters S, Knaus A, Moosa S, Averdunk L, Boschann F, Sczakiel HL, Schwartzmann S, Mensah MA, Pantel JT, Holtgrewe M, Bösch A, Weiß C, Weinhold N, Suter AA, Stoltenburg C, Neugebauer J, Kallinich T, Kaindl AM, Holzhauer S, Bührer C, Bufler P, Kornak U, Ott CE, Schülke M, Nguyen HHP, Hoffjan S, Grasemann C, Rothoeft T, Brinkmann F, Matar N, Sivalingam S, Perne C, Mangold E, Kreiss M, Cremer K, Betz RC, Mücke M, Grigull L, Klockgether T, Spier I, Heimbach A, Bender T, Brand F, Stieber C, Morawiec AM, Karakostas P, Schäfer VS, Bernsen S, Weydt P, Castro-Gomez S, Aziz A, Grobe-Einsler M, Kimmich O, Kobeleva X, Önder D, Lesmann H, Kumar S, Tacik P, Basin MA, Incardona P, Lee-Kirsch MA, Berner R, Schuetz C, Körholz J, Kretschmer T, Di Donato N, Schröck E, Heinen A, Reuner U, Hanßke AM, Kaiser FJ, Manka E, Munteanu M, Kuechler A, Cordula K, Hirtz R, Schlapakow E, Schlein C, Lisfeld J, Kubisch C, Herget T, Hempel M, Weiler-Normann C, Ullrich K, Schramm C, Rudolph C, Rillig F, Groffmann M, Muntau A, Tibelius A, Schwaibold EMC, Schaaf CP, Zawada M, Kaufmann L, Hinderhofer K, Okun PM, Kotzaeridou U, Hoffmann GF, Choukair D, Bettendorf M, Spielmann M, Ripke A, Pauly M, Münchau A, Lohmann K, Hüning I, Hanker B, Bäumer T, Herzog R, Hellenbroich Y, Westphal DS, Strom T, Kovacs R, Riedhammer KM, Mayerhanser K, Graf E, Brugger M, Hoefele J, Oexle K, Mirza-Schreiber N, Berutti R, Schatz U, Krenn M, Makowski C, Weigand H, Schröder S, Rohlfs M, Vill K, Hauck F, Borggraefe I, Müller-Felber W, Kurth I, Elbracht M, Knopp C, Begemann M, Kraft F, Lemke JR, Hentschel J, Platzer K, Strehlow V, Abou Jamra R, Kehrer M, Demidov G, Beck-Wödl S, Graessner H, Sturm M, Zeltner L, Schöls LJ, Magg J, Bevot A, Kehrer C, Kaiser N, Turro E, Horn D, Grüters-Kieslich A, Klein C, Mundlos S, Nöthen M, Riess O, Meitinger T, Krude H, Krawitz PM, Haack T, Ehmke N, and Wagner M
- Subjects
- Humans, Female, Male, Child, Germany, Exome Sequencing methods, Adolescent, Genetic Association Studies methods, Genetic Testing methods, Child, Preschool, Prospective Studies, Adult, Neurodevelopmental Disorders genetics, Neurodevelopmental Disorders diagnosis, Infant, Young Adult, Phenotype, High-Throughput Nucleotide Sequencing methods
- Abstract
Individuals with ultrarare disorders pose a structural challenge for healthcare systems since expert clinical knowledge is required to establish diagnoses. In TRANSLATE NAMSE, a 3-year prospective study, we evaluated a novel diagnostic concept based on multidisciplinary expertise in Germany. Here we present the systematic investigation of the phenotypic and molecular genetic data of 1,577 patients who had undergone exome sequencing and were partially analyzed with next-generation phenotyping approaches. Molecular genetic diagnoses were established in 32% of the patients totaling 370 distinct molecular genetic causes, most with prevalence below 1:50,000. During the diagnostic process, 34 novel and 23 candidate genotype-phenotype associations were identified, mainly in individuals with neurodevelopmental disorders. Sequencing data of the subcohort that consented to computer-assisted analysis of their facial images with GestaltMatcher could be prioritized more efficiently compared with approaches based solely on clinical features and molecular scores. Our study demonstrates the synergy of using next-generation sequencing and phenotyping for diagnosing ultrarare diseases in routine healthcare and discovering novel etiologies by multidisciplinary teams., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
4. Etiological involvement of KCND1 variants in an X-linked neurodevelopmental disorder with variable expressivity.
- Author
-
Kalm T, Schob C, Völler H, Gardeitchik T, Gilissen C, Pfundt R, Klöckner C, Platzer K, Klabunde-Cherwon A, Ries M, Syrbe S, Beccaria F, Madia F, Scala M, Zara F, Hofstede F, Simon MEH, van Jaarsveld RH, Oegema R, van Gassen KLI, Holwerda SJB, Barakat TS, Bouman A, van Slegtenhorst M, Álvarez S, Fernández-Jaén A, Porta J, Accogli A, Mancardi MM, Striano P, Iacomino M, Chae JH, Jang S, Kim SY, Chitayat D, Mercimek-Andrews S, Depienne C, Kampmeier A, Kuechler A, Surowy H, Bertini ES, Radio FC, Mancini C, Pizzi S, Tartaglia M, Gauthier L, Genevieve D, Tharreau M, Azoulay N, Zaks-Hoffer G, Gilad NK, Orenstein N, Bernard G, Thiffault I, Denecke J, Herget T, Kortüm F, Kubisch C, Bähring R, and Kindler S
- Subjects
- Adolescent, Adult, Child, Child, Preschool, Female, Humans, Infant, Male, Epilepsy genetics, Exome Sequencing, Genetic Diseases, X-Linked genetics, Heterozygote, Mutation, Missense genetics, Pedigree, Phenotype, Shal Potassium Channels genetics, Neurodevelopmental Disorders genetics
- Abstract
Utilizing trio whole-exome sequencing and a gene matching approach, we identified a cohort of 18 male individuals from 17 families with hemizygous variants in KCND1, including two de novo missense variants, three maternally inherited protein-truncating variants, and 12 maternally inherited missense variants. Affected subjects present with a neurodevelopmental disorder characterized by diverse neurological abnormalities, mostly delays in different developmental domains, but also distinct neuropsychiatric signs and epilepsy. Heterozygous carrier mothers are clinically unaffected. KCND1 encodes the α-subunit of Kv4.1 voltage-gated potassium channels. All variant-associated amino acid substitutions affect either the cytoplasmic N- or C-terminus of the channel protein except for two occurring in transmembrane segments 1 and 4. Kv4.1 channels were functionally characterized in the absence and presence of auxiliary β subunits. Variant-specific alterations of biophysical channel properties were diverse and varied in magnitude. Genetic data analysis in combination with our functional assessment shows that Kv4.1 channel dysfunction is involved in the pathogenesis of an X-linked neurodevelopmental disorder frequently associated with a variable neuropsychiatric clinical phenotype., Competing Interests: Declaration of interests The authors declare no competing interests., (Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
5. Gain-of-function and loss-of-function variants in GRIA3 lead to distinct neurodevelopmental phenotypes.
- Author
-
Rinaldi B, Bayat A, Zachariassen LG, Sun JH, Ge YH, Zhao D, Bonde K, Madsen LH, Awad IAA, Bagiran D, Sbeih A, Shah SM, El-Sayed S, Lyngby SM, Pedersen MG, Stenum-Berg C, Walker LC, Krey I, Delahaye-Duriez A, Emrick LT, Sully K, Murali CN, Burrage LC, Plaud Gonzalez JA, Parnes M, Friedman J, Isidor B, Lefranc J, Redon S, Heron D, Mignot C, Keren B, Fradin M, Dubourg C, Mercier S, Besnard T, Cogne B, Deb W, Rivier C, Milani D, Bedeschi MF, Di Napoli C, Grilli F, Marchisio P, Koudijs S, Veenma D, Argilli E, Lynch SA, Au PYB, Ayala Valenzuela FE, Brown C, Masser-Frye D, Jones M, Patron Romero L, Li WL, Thorpe E, Hecher L, Johannsen J, Denecke J, McNiven V, Szuto A, Wakeling E, Cruz V, Sency V, Wang H, Piard J, Kortüm F, Herget T, Bierhals T, Condell A, Ben-Zeev B, Kaur S, Christodoulou J, Piton A, Zweier C, Kraus C, Micalizzi A, Trivisano M, Specchio N, Lesca G, Møller RS, Tümer Z, Musgaard M, Gerard B, Lemke JR, Shi YS, and Kristensen AS
- Subjects
- Humans, Male, Female, Child, Child, Preschool, Adolescent, Infant, Adult, Young Adult, Neurodevelopmental Disorders genetics, Receptors, AMPA genetics, Phenotype, Loss of Function Mutation genetics, Gain of Function Mutation genetics
- Abstract
AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors (AMPARs) mediate fast excitatory neurotransmission in the brain. AMPARs form by homo- or heteromeric assembly of subunits encoded by the GRIA1-GRIA4 genes, of which only GRIA3 is X-chromosomal. Increasing numbers of GRIA3 missense variants are reported in patients with neurodevelopmental disorders (NDD), but only a few have been examined functionally. Here, we evaluated the impact on AMPAR function of one frameshift and 43 rare missense GRIA3 variants identified in patients with NDD by electrophysiological assays. Thirty-one variants alter receptor function and show loss-of-function or gain-of-function properties, whereas 13 appeared neutral. We collected detailed clinical data from 25 patients (from 23 families) harbouring 17 of these variants. All patients had global developmental impairment, mostly moderate (9/25) or severe (12/25). Twelve patients had seizures, including focal motor (6/12), unknown onset motor (4/12), focal impaired awareness (1/12), (atypical) absence (2/12), myoclonic (5/12) and generalized tonic-clonic (1/12) or atonic (1/12) seizures. The epilepsy syndrome was classified as developmental and epileptic encephalopathy in eight patients, developmental encephalopathy without seizures in 13 patients, and intellectual disability with epilepsy in four patients. Limb muscular hypotonia was reported in 13/25, and hypertonia in 10/25. Movement disorders were reported in 14/25, with hyperekplexia or non-epileptic erratic myoclonus being the most prevalent feature (8/25). Correlating receptor functional phenotype with clinical features revealed clinical features for GRIA3-associated NDDs and distinct NDD phenotypes for loss-of-function and gain-of-function variants. Gain-of-function variants were associated with more severe outcomes: patients were younger at the time of seizure onset (median age: 1 month), hypertonic and more often had movement disorders, including hyperekplexia. Patients with loss-of-function variants were older at the time of seizure onset (median age: 16 months), hypotonic and had sleeping disturbances. Loss-of-function and gain-of-function variants were disease-causing in both sexes but affected males often carried de novo or hemizygous loss-of-function variants inherited from healthy mothers, whereas affected females had mostly de novo heterozygous gain-of-function variants., (© The Author(s) 2023. Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com.)
- Published
- 2024
- Full Text
- View/download PDF
6. A novel TTC26 variant in a patient with hexadactyly, pituitary stalk interruption, hepatopathy, nephropathy, and bilateral lip-palate cleft: A case report and expansion of the phenotype.
- Author
-
Papingi D, Bierhals T, Volk AE, Kutsche M, Paul K, and Herget T
- Subjects
- Male, Humans, Infant, Newborn, Pituitary Gland abnormalities, Syndrome, Phenotype, Cleft Palate genetics, Cleft Lip genetics, Polydactyly, Kidney Diseases
- Abstract
Biallelic pathogenic variants in the TTC26 gene are known to cause BRENS (biliary, renal, neurological, skeletal) syndrome, an ultra-rare autosomal recessive condition with only few patients published to date. BRENS syndrome is characterized by hexadactyly, severe neonatal cholestasis, and involvement of the brain, heart, and kidney, however the full phenotypic and genotypic spectrum is unknown. Here, we report on a previously undescribed homozygous intronic TTC26 variant (c.1006-5 T > C) in a patient showing some of the known TTC26-associated features like hexadactyly, hypopituitarism, hepatopathy, nephropathy, and congenital heart defect. Moreover, he presented with a suspected unilateral hearing loss and bilateral cleft lip-palate. The variant is considered to affect correct splicing by the loss of the canonical acceptor splice site and activation of a cryptic acceptor splice site. Hereby, our patient represents one additional patient with BRENS syndrome carrying a previously unreported TTC26 variant. Furthermore, we confirm the involvement of the pituitary gland to be a common clinical feature of the syndrome and broaden the clinical spectrum of TTC26 ciliopathy to include facial clefts and a probable hearing involvement., (© 2023 The Authors. American Journal of Medical Genetics Part A published by Wiley Periodicals LLC.)
- Published
- 2024
- Full Text
- View/download PDF
7. TMCO3, a Putative K + :Proton Antiporter at the Golgi Apparatus, Is Important for Longitudinal Growth in Mice and Humans.
- Author
-
Holling T, Brylka L, Scholz T, Bierhals T, Herget T, Meinecke P, Schinke T, Oheim R, and Kutsche K
- Subjects
- Animals, Child, Humans, Mice, Golgi Apparatus, HeLa Cells, Swine, Swine, Miniature, Antiporters genetics, Antiporters metabolism, Dwarfism genetics, Protons
- Abstract
Isolated short stature, defined as short stature without any other abnormalities, is a common heterogeneous condition in children. Exome sequencing identified the homozygous nonsense variant c.1832G>A/p.(Trp611*) in TMCO3 in two sisters with isolated short stature. Radiological studies, biochemical measurements, assessment of the skeletal status, and three-dimensional bone microarchitecture revealed no relevant skeletal and bone abnormalities in both sisters. The homozygous TMCO3 variant segregated with short stature in the family. TMCO3 transcript levels were reduced by ~50% in leukocyte-derived RNA of both sisters compared with controls, likely due to nonsense-mediated mRNA decay. In primary urinary cells of heterozygous family members, we detected significantly reduced TMCO3 protein levels. TMCO3 is functionally uncharacterized. We ectopically expressed wild-type TMCO3 in HeLa and ATDC5 chondrogenic cells and detected TMCO3 predominantly at the Golgi apparatus, whereas the TMCO3
W611* mutant did not reach the Golgi. Coordinated co-expression of TMCO3W611* -HA and EGFP in HeLa cells confirmed intrinsic instability and/or degradation of the mutant. Tmco3 is expressed in all relevant mouse skeletal cell types. Highest abundance of Tmco3 was found in chondrocytes of the prehypertrophic zone in mouse and minipig growth plates where it co-localizes with a Golgi marker. Knockdown of Tmco3 in differentiated ATDC5 cells caused reduced and increased expression of Pthlh and Ihh, respectively. Measurement of long bones in Tmco3tm1b(KOMP)Wtsi knockout mice revealed significant shortening of forelimbs and hindlimbs. TMCO3 is a potential member of the monovalent cation:proton antiporter 2 (CPA2) family. By in silico tools and homology modeling, TMCO3 is predicted to have an N-terminal secretory signal peptide, forms a dimer localized to the membrane, and is organized in a dimerization and a core domain. The core domain contains the CPA2 motif essential for K+ binding and selectivity. Collectively, our data demonstrate that loss of TMCO3 causes growth defects in both humans and mice. © 2023 American Society for Bone and Mineral Research (ASBMR)., (© 2023 American Society for Bone and Mineral Research (ASBMR).)- Published
- 2023
- Full Text
- View/download PDF
8. Genotype-phenotype correlations in RHOBTB2-associated neurodevelopmental disorders.
- Author
-
Langhammer F, Maroofian R, Badar R, Gregor A, Rochman M, Ratliff JB, Koopmans M, Herget T, Hempel M, Kortüm F, Heron D, Mignot C, Keren B, Brooks S, Botti C, Ben-Zeev B, Argilli E, Sherr EH, Gowda VK, Srinivasan VM, Bakhtiari S, Kruer MC, Salih MA, Kuechler A, Muller EA, Blocker K, Kuismin O, Park KL, Kochhar A, Brown K, Ramanathan S, Clark RD, Elgizouli M, Melikishvili G, Tabatadze N, Stark Z, Mirzaa GM, Ong J, Grasshoff U, Bevot A, von Wintzingerode L, Jamra RA, Hennig Y, Goldenberg P, Al Alam C, Charif M, Boulouiz R, Bellaoui M, Amrani R, Al Mutairi F, Tamim AM, Abdulwahab F, Alkuraya FS, Khouj EM, Alvi JR, Sultan T, Hashemi N, Karimiani EG, Ashrafzadeh F, Imannezhad S, Efthymiou S, Houlden H, Sticht H, and Zweier C
- Subjects
- Humans, Genetic Association Studies, Phenotype, GTP Phosphohydrolases genetics, GTP-Binding Proteins genetics, Tumor Suppressor Proteins genetics, Neurodevelopmental Disorders genetics, Epilepsy genetics, Epilepsy pathology, Intellectual Disability genetics
- Abstract
Purpose: Missense variants clustering in the BTB domain region of RHOBTB2 cause a developmental and epileptic encephalopathy with early-onset seizures and severe intellectual disability., Methods: By international collaboration, we assembled individuals with pathogenic RHOBTB2 variants and a variable spectrum of neurodevelopmental disorders. By western blotting, we investigated the consequences of missense variants in vitro., Results: In accordance with previous observations, de novo heterozygous missense variants in the BTB domain region led to a severe developmental and epileptic encephalopathy in 16 individuals. Now, we also identified de novo missense variants in the GTPase domain in 6 individuals with apparently more variable neurodevelopmental phenotypes with or without epilepsy. In contrast to variants in the BTB domain region, variants in the GTPase domain do not impair proteasomal degradation of RHOBTB2 in vitro, indicating different functional consequences. Furthermore, we observed biallelic splice-site and truncating variants in 9 families with variable neurodevelopmental phenotypes, indicating that complete loss of RHOBTB2 is pathogenic as well., Conclusion: By identifying genotype-phenotype correlations regarding location and consequences of de novo missense variants in RHOBTB2 and by identifying biallelic truncating variants, we further delineate and expand the molecular and clinical spectrum of RHOBTB2-related phenotypes, including both autosomal dominant and recessive neurodevelopmental disorders., Competing Interests: Conflict of Interest Jeffrey B. Ratliff serves on the editorial board for the journal Neurology and has received consulting fees from Supernus Pharmaceuticals. All other authors declare no conflicts of interest., (Copyright © 2023 American College of Medical Genetics and Genomics. Published by Elsevier Inc. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
9. Psychological distress of adult patients consulting a center for rare and undiagnosed diseases: a cross-sectional study.
- Author
-
Mund M, Uhlenbusch N, Rillig F, Weiler-Normann C, Herget T, Kubisch C, Löwe B, and Schramm C
- Subjects
- Humans, Adult, Female, Middle Aged, Male, Cross-Sectional Studies, Surveys and Questionnaires, Rare Diseases diagnosis, Anxiety, Undiagnosed Diseases, Psychological Distress
- Abstract
Background: Centers for rare diseases serve as contact points for patients with complex, often undiagnosed complaints and persistent somatic symptoms of heterogeneous origin. Little is known about psychological distress of patients consulting these centers., Objectives: To better understand psychological distress of adult patients presenting at a center for rare diseases by determining the proportion of patients screening positive for depressive, anxiety, and somatic symptom disorders (SSD) and to identify factors associated with increased psychopathology., Methods: Cross-sectional data from the routine care registry of the Martin Zeitz Center for Rare Diseases (MZCSE) at the University Medical Center Hamburg-Eppendorf in Germany was retrieved and analyzed. We included all adult patients presenting between October 01,2020 and September 30,2021, who gave written informed consent., Measures: Sociodemographic variables, medical history and healthcare utilization, as well as validated measures to screen for a depressive disorder (PHQ-8), an anxiety disorder (GAD-7), and SSD (PHQ-15, SSD-12)., Results: N = 167 patients were included (age 44.5 ± 14.3 years, 64.7% female). A total of 40.7% of the patients screened positive for a depressive disorder (PHQ-8 ≥ 10), 27.5% for an anxiety disorder (GAD-7 ≥ 10) and 45.0% screened positive for SSD (PHQ-15 ≥ 9 & SSD-12 ≥ 23). Factors associated with increased psychopathology included the number of symptoms, the number of different specialties consulted before and past psychotherapy., Conclusions: Patients presenting at centers for rare diseases are likely to experience high rates of psychological distress. Systematically screening patients with rare and undiagnosed diseases for mental disorders can help to detect those at risk at an early stage and initiate adequate psychological care., (© 2023. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
10. The neurodevelopmental and facial phenotype in individuals with a TRIP12 variant.
- Author
-
Aerden M, Denommé-Pichon AS, Bonneau D, Bruel AL, Delanne J, Gérard B, Mazel B, Philippe C, Pinson L, Prouteau C, Putoux A, Tran Mau-Them F, Viora-Dupont É, Vitobello A, Ziegler A, Piton A, Isidor B, Francannet C, Maillard PY, Julia S, Philippe A, Schaefer E, Koene S, Ruivenkamp C, Hoffer M, Legius E, Theunis M, Keren B, Buratti J, Charles P, Courtin T, Misra-Isrie M, van Haelst M, Waisfisz Q, Wieczorek D, Schmetz A, Herget T, Kortüm F, Lisfeld J, Debray FG, Bramswig NC, Atallah I, Fodstad H, Jouret G, Almoguera B, Tahsin-Swafiri S, Santos-Simarro F, Palomares-Bralo M, López-González V, Kibaek M, Tørring PM, Renieri A, Bruno LP, Õunap K, Wojcik M, Hsieh TC, Krawitz P, and Van Esch H
- Subjects
- Humans, Phenotype, Mutation, Missense, Carrier Proteins genetics, Ubiquitin-Protein Ligases genetics, Autism Spectrum Disorder genetics, Intellectual Disability genetics, Neurodevelopmental Disorders genetics
- Abstract
Haploinsufficiency of TRIP12 causes a neurodevelopmental disorder characterized by intellectual disability associated with epilepsy, autism spectrum disorder and dysmorphic features, also named Clark-Baraitser syndrome. Only a limited number of cases have been reported to date. We aimed to further delineate the TRIP12-associated phenotype and objectify characteristic facial traits through GestaltMatcher image analysis based on deep-learning algorithms in order to establish a TRIP12 gestalt. 38 individuals between 3 and 66 years (F = 20, M = 18) - 1 previously published and 37 novel individuals - were recruited through an ERN ITHACA call for collaboration. 35 TRIP12 variants were identified, including frameshift (n = 15) and nonsense (n = 6) variants, as well as missense (n = 5) and splice (n = 3) variants, intragenic deletions (n = 4) and two multigene deletions disrupting TRIP12. Though variable in severity, global developmental delay was noted in all individuals, with language deficit most pronounced. About half showed autistic features and susceptibility to obesity seemed inherent to this disorder. A more severe expression was noted in individuals with a missense variant. Facial analysis showed a clear gestalt including deep-set eyes with narrow palpebral fissures and fullness of the upper eyelids, downturned corners of the mouth and large, often low-set ears with prominent earlobes. We report the largest cohort to date of individuals with TRIP12 variants, further delineating the associated phenotype and introducing a facial gestalt. These findings will improve future counseling and patient guidance., (© 2023. The Author(s), under exclusive licence to European Society of Human Genetics.)
- Published
- 2023
- Full Text
- View/download PDF
11. Episignature Mapping of TRIP12 Provides Functional Insight into Clark-Baraitser Syndrome.
- Author
-
van der Laan L, Rooney K, Alders M, Relator R, McConkey H, Kerkhof J, Levy MA, Lauffer P, Aerden M, Theunis M, Legius E, Tedder ML, Vissers LELM, Koene S, Ruivenkamp C, Hoffer MJV, Wieczorek D, Bramswig NC, Herget T, González VL, Santos-Simarro F, Tørring PM, Denomme-Pichon AS, Isidor B, Keren B, Julia S, Schaefer E, Francannet C, Maillard PY, Misra-Isrie M, Van Esch H, Mannens MMAM, Sadikovic B, van Haelst MM, and Henneman P
- Subjects
- Humans, Facies, Ubiquitin-Protein Ligases genetics, Ubiquitin-Protein Ligases metabolism, Ubiquitin metabolism, Carrier Proteins metabolism, Mental Retardation, X-Linked
- Abstract
Clark-Baraitser syndrome is a rare autosomal dominant intellectual disability syndrome caused by pathogenic variants in the TRIP12 (Thyroid Hormone Receptor Interactor 12) gene. TRIP12 encodes an E3 ligase in the ubiquitin pathway. The ubiquitin pathway includes activating E1, conjugating E2 and ligating E3 enzymes which regulate the breakdown and sorting of proteins. This enzymatic pathway is crucial for physiological processes. A significant proportion of TRIP12 variants are currently classified as variants of unknown significance (VUS). Episignatures have been shown to represent a powerful diagnostic tool to resolve inconclusive genetic findings for Mendelian disorders and to re-classify VUSs. Here, we show the results of DNA methylation episignature analysis in 32 individuals with pathogenic, likely pathogenic and VUS variants in TRIP12 . We identified a specific and sensitive DNA methylation (DNAm) episignature associated with pathogenic TRIP12 variants, establishing its utility as a clinical biomarker for Clark-Baraitser syndrome. In addition, we performed analysis of differentially methylated regions as well as functional correlation of the TRIP12 genome-wide methylation profile with the profiles of 56 additional neurodevelopmental disorders.
- Published
- 2022
- Full Text
- View/download PDF
12. Biallelic variants in ZNF142 lead to a syndromic neurodevelopmental disorder.
- Author
-
Christensen MB, Levy AM, Mohammadi NA, Niceta M, Kaiyrzhanov R, Dentici ML, Al Alam C, Alesi V, Benoit V, Bhatia KP, Bierhals T, Boßelmann CM, Buratti J, Callewaert B, Ceulemans B, Charles P, De Wachter M, Dehghani M, D'haenens E, Doco-Fenzy M, Geßner M, Gobert C, Guliyeva U, Haack TB, Hammer TB, Heinrich T, Hempel M, Herget T, Hoffmann U, Horvath J, Houlden H, Keren B, Kresge C, Kumps C, Lederer D, Lermine A, Magrinelli F, Maroofian R, Vahidi Mehrjardi MY, Moudi M, Müller AJ, Oostra AJ, Pletcher BA, Ros-Pardo D, Samarasekera S, Tartaglia M, Van Schil K, Vogt J, Wassmer E, Winkelmann J, Zaki MS, Zech M, Lerche H, Radio FC, Gomez-Puertas P, Møller RS, and Tümer Z
- Subjects
- Humans, Phenotype, Seizures complications, Seizures genetics, Intellectual Disability diagnosis, Movement Disorders complications, Neurodevelopmental Disorders genetics, Transcription Factors genetics
- Abstract
Biallelic variants of the gene encoding for the zinc-finger protein 142 (ZNF142) have recently been associated with intellectual disability (ID), speech impairment, seizures, and movement disorders in nine individuals from five families. In this study, we obtained phenotype and genotype information of 26 further individuals from 16 families. Among the 27 different ZNF142 variants identified in the total of 35 individuals only four were missense. Missense variants may give a milder phenotype by changing the local structure of ZF motifs as suggested by protein modeling; but this correlation should be validated in larger cohorts and pathogenicity of the missense variants should be investigated with functional studies. Clinical features of the 35 individuals suggest that biallelic ZNF142 variants lead to a syndromic neurodevelopmental disorder with mild to moderate ID, varying degrees of delay in language and gross motor development, early onset seizures, hypotonia, behavioral features, movement disorders, and facial dysmorphism. The differences in symptom frequencies observed in the unpublished individuals compared to those of published, and recognition of previously underemphasized facial features are likely to be due to the small sizes of the previous cohorts, which underlines the importance of larger cohorts for the phenotype descriptions of rare genetic disorders., (© 2022 The Authors. Clinical Genetics published by John Wiley & Sons Ltd.)
- Published
- 2022
- Full Text
- View/download PDF
13. Prevalence and clinical prediction of mitochondrial disorders in a large neuropediatric cohort.
- Author
-
van der Ven AT, Johannsen J, Kortüm F, Wagner M, Tsiakas K, Bierhals T, Lessel D, Herget T, Kloth K, Lisfeld J, Scholz T, Obi N, Wortmann S, Prokisch H, Kubisch C, Denecke J, Santer R, and Hempel M
- Subjects
- Age Factors, Alleles, Child, Cohort Studies, Genes, Mitochondrial, Genetic Association Studies, Genotype, Humans, Mitochondrial Diseases diagnosis, Mutation, Nervous System Diseases diagnosis, Phenotype, Prevalence, Prognosis, Genetic Predisposition to Disease, Mitochondrial Diseases epidemiology, Mitochondrial Diseases genetics, Nervous System Diseases epidemiology, Nervous System Diseases genetics
- Abstract
Neurological symptoms are frequent and often a leading feature of childhood-onset mitochondrial disorders (MD) but the exact incidence of MD in unselected neuropediatric patients is unknown. Their early detection is desirable due to a potentially rapid clinical decline and the availability of management options. In 491 children with neurological symptoms, a comprehensive diagnostic work-up including exome sequencing was performed. The success rate in terms of a molecular genetic diagnosis within our cohort was 51%. Disease-causing variants in a mitochondria-associated gene were detected in 12% of solved cases. In order to facilitate the clinical identification of MDs within neuropediatric cohorts, we have created an easy-to-use bedside-tool, the MDC-NP. In our cohort, the MDC-NP predicted disease conditions related to MDs with a sensitivity of 0.83, and a specificity of 0.96., (© 2021 The Authors. Clinical Genetics published by John Wiley & Sons Ltd.)
- Published
- 2021
- Full Text
- View/download PDF
14. Congenital disorders of glycosylation with defective fucosylation.
- Author
-
Hüllen A, Falkenstein K, Weigel C, Huidekoper H, Naumann-Bartsch N, Spenger J, Feichtinger RG, Schaefers J, Frenz S, Kotlarz D, Momen T, Khoshnevisan R, Riedhammer KM, Santer R, Herget T, Rennings A, Lefeber DJ, Mayr JA, Thiel C, and Wortmann SB
- Subjects
- Adolescent, Adult, Child, Child, Preschool, Female, Fibroblasts metabolism, Fibroblasts pathology, Glycoproteins, Glycosylation, Humans, Infant, Male, Treatment Outcome, Young Adult, Congenital Disorders of Glycosylation drug therapy, Congenital Disorders of Glycosylation genetics, Fucose therapeutic use, Monosaccharide Transport Proteins genetics
- Abstract
Fucosylation is essential for intercellular and intracellular recognition, cell-cell interaction, fertilization, and inflammatory processes. Only five types of congenital disorders of glycosylation (CDG) related to an impaired fucosylation have been described to date: FUT8-CDG, FCSK-CDG, POFUT1-CDG SLC35C1-CDG, and the only recently described GFUS-CDG. This review summarizes the clinical findings of all hitherto known 25 patients affected with those defects with regard to their pathophysiology and genotype. In addition, we describe five new patients with novel variants in the SLC35C1 gene. Furthermore, we discuss the efficacy of fucose therapy approaches within the different defects., (© 2021 SSIEM.)
- Published
- 2021
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.