1. Uncovering PFAS and Other Xenobiotics in the Dark Metabolome Using Ion Mobility Spectrometry, Mass Defect Analysis, and Machine Learning
- Author
-
MaKayla Foster, Markace Rainey, Chandler Watson, James N. Dodds, Kaylie I. Kirkwood, Facundo M. Fernández, and Erin S. Baker
- Subjects
Machine Learning ,Fluorocarbons ,Ion Mobility Spectrometry ,Metabolome ,Humans ,Environmental Chemistry ,General Chemistry ,Article ,Xenobiotics - Abstract
The identification of xenobiotics in nontargeted metabolomic analyses is a vital step in understanding human exposure. Xenobiotic metabolism, transformation, excretion, and coexistence with other endogenous molecules, however, greatly complicate the interpretation of features detected in nontargeted studies. While mass spectrometry (MS)-based platforms are commonly used in metabolomic measurements, deconvoluting endogenous metabolites from xenobiotics is also often challenged by the lack of xenobiotic parent and metabolite standards as well as the numerous isomers possible for each small molecule m/z feature. Here, we evaluate a xenobiotic structural annotation workflow using ion mobility spectrometry coupled with MS (IMS–MS), mass defect filtering, and machine learning to uncover potential xenobiotic classes and species in large metabolomic feature lists. Xenobiotic classes examined included those of known high toxicities, including per- and polyfluoroalkyl substances (PFAS), polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and pesticides. Specifically, when the workflow was applied to identify PFAS in the NIST SRM 1957 and 909c human serum samples, it greatly reduced the hundreds of detected liquid chromatography (LC)–IMS–MS features by utilizing both mass defect filtering and m/z versus IMS collision cross sections relationships. These potential PFAS features were then compared to the EPA CompTox entries, and while some matched within specific m/z tolerances, there were still many unknowns illustrating the importance of nontargeted studies for detecting new molecules with known chemical characteristics. Additionally, this workflow can also be utilized to evaluate other xenobiotics and enable more confident annotations from nontargeted studies.
- Published
- 2022