4 results on '"Jersin RÅ"'
Search Results
2. Impaired Adipocyte SLC7A10 Promotes Lipid Storage in Association With Insulin Resistance and Altered BCAA Metabolism.
- Author
-
Jersin RÅ, Sri Priyanka Tallapragada D, Skartveit L, Bjune MS, Muniandy M, Lee-Ødegård S, Heinonen S, Alvarez M, Birkeland KI, André Drevon C, Pajukanta P, McCann A, Pietiläinen KH, Claussnitzer M, Mellgren G, and Dankel SN
- Subjects
- Animals, Humans, Mice, Adipocytes metabolism, Amino Acids metabolism, Amino Acids, Branched-Chain metabolism, Fatty Acids metabolism, Glucose metabolism, Lipid Metabolism, Obesity genetics, Obesity metabolism, RNA, Messenger metabolism, Tandem Mass Spectrometry, Valine, Insulin Resistance
- Abstract
Context: The neutral amino acid transporter SLC7A10/ASC-1 is an adipocyte-expressed gene with reduced expression in insulin resistance and obesity. Inhibition of SLC7A10 in adipocytes was shown to increase lipid accumulation despite decreasing insulin-stimulated uptake of glucose, a key substrate for de novo lipogenesis. These data imply that alternative lipogenic substrates to glucose fuel continued lipid accumulation during insulin resistance in obesity., Objective: We examined whether increased lipid accumulation during insulin resistance in adipocytes may involve alter flux of lipogenic amino acids dependent on SLC7A10 expression and activity, and whether this is reflected by extracellular and circulating concentrations of marker metabolites., Methods: In adipocyte cultures with impaired SLC7A10, we performed RNA sequencing and relevant functional assays. By targeted metabolite analyses (GC-MS/MS), flux of all amino acids and selected metabolites were measured in human and mouse adipose cultures. Additionally, SLC7A10 mRNA levels in human subcutaneous adipose tissue (SAT) were correlated to candidate metabolites and adiposity phenotypes in 2 independent cohorts., Results: SLC7A10 impairment altered expression of genes related to metabolic processes, including branched-chain amino acid (BCAA) catabolism, lipogenesis, and glyceroneogenesis. In 3T3-L1 adipocytes, SLC7A10 inhibition increased fatty acid uptake and cellular content of glycerol and cholesterol. SLC7A10 impairment in SAT cultures altered uptake of aspartate and glutamate, and increased net uptake of BCAAs, while increasing the net release of the valine catabolite 3- hydroxyisobutyrate (3-HIB). In human cohorts, SLC7A10 mRNA correlated inversely with total fat mass, circulating triacylglycerols, BCAAs, and 3-HIB., Conclusion: Reduced SLC7A10 activity strongly affects flux of BCAAs in adipocytes, which may fuel continued lipogenesis during insulin resistance, and be reflected in increased circulating levels of the valine-derived catabolite 3-HIB., (© The Author(s) 2023. Published by Oxford University Press on behalf of the Endocrine Society.)
- Published
- 2023
- Full Text
- View/download PDF
3. The neutral amino acid transporter SLC7A10 in adipose tissue, obesity and insulin resistance.
- Author
-
Jersin RÅ, Jonassen LR, and Dankel SN
- Abstract
Obesity, insulin resistance and type 2 diabetes represent major global health challenges, and a better mechanistic understanding of the altered metabolism in these conditions may give improved treatment strategies. SLC7A10, a member of the SLC7 subfamily of solute carriers, also named ASC-1 (alanine, serine, cysteine transporter-1), has recently been implicated as an important modulator of core processes in energy- and lipid metabolism, through its particularly high expression in adipocytes. In human cohorts, adipose SLC7A10 mRNA shows strong inverse correlations with insulin resistance, adipocyte size and components of the metabolic syndrome, strong heritability, and an association with type 2 diabetes risk alleles. SLC7A10 has been proposed as a marker of white as opposed to thermogenic beige and brown adipocytes, supported by increased formation of thermogenic beige adipocytes upon loss of Slc7a10 in mouse white preadipocytes. Overexpression of SLC7A10 in mature white adipocytes was found to lower the generation of reactive oxygen species (ROS) and stimulate mitochondrial respiratory capacity, while SLC7A10 inhibition had the opposite effect, indicating that SLC7A10 supports a beneficial increase in mitochondrial activity in white adipocytes. Consistent with these beneficial effects, inhibition of SLC7A10 was in mouse and human white adipocyte cultures found to increase lipid accumulation, likely explained by lowered serine uptake and glutathione production. Additionally, zebrafish with partial global Slc7a10b loss-of-function were found to have greater diet-induced body weight and larger visceral adipocytes compared to controls. However, challenging that SLC7A10 exerts metabolic benefits only in white adipocytes, suppression of SLC7A10 has been reported to decrease mitochondrial respiration and expression of thermogenic genes also in some beige and brown adipocyte cultures. Taken together, the data point to an important but complex role of SLC7A10 in metabolic regulation across different adipose tissue depots and adipocyte subtypes. Further research into SLC7A10 functions in specific adipocyte subtypes may lead to new precision therapeutics for mitigating the risk of insulin resistance and type 2 diabetes., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2022 Jersin, Jonassen and Dankel.)
- Published
- 2022
- Full Text
- View/download PDF
4. Metabolic and Epigenetic Regulation by Estrogen in Adipocytes.
- Author
-
Bjune JI, Strømland PP, Jersin RÅ, Mellgren G, and Dankel SN
- Subjects
- Animals, Estrogens metabolism, Female, Humans, Intra-Abdominal Fat metabolism, Male, Mice, Obesity genetics, Obesity metabolism, Adipocytes metabolism, Epigenesis, Genetic
- Abstract
Sex hormones contribute to differences between males and females in body fat distribution and associated disease risk. Higher concentrations of estrogens are associated with a more gynoid body shape and with more fat storage on hips and thighs rather than in visceral depots. Estrogen-mediated protection against visceral adiposity is shown in post-menopausal women with lower levels of estrogens and the reduction in central body fat observed after treatment with hormone-replacement therapy. Estrogen exerts its physiological effects via the estrogen receptors (ERα, ERβ and GPR30) in target cells, including adipocytes. Studies in mice indicate that estrogen protects against adipose inflammation and fibrosis also before the onset of obesity. The mechanisms involved in estrogen-dependent body fat distribution are incompletely understood, but involve, e.g., increased mTOR signaling and suppression of autophagy and adipogenesis/lipid storage. Estrogen plays a key role in epigenetic regulation of adipogenic genes by interacting with enzymes that remodel DNA methylation and histone tail post-translational modifications. However, more studies are needed to map the differential epigenetic effects of ER in different adipocyte subtypes, including those in subcutaneous and visceral adipose tissues. We here review recent discoveries of ER-mediated transcriptional and epigenetic regulation in adipocytes, which may explain sexual dimorphisms in body fat distribution and obesity-related disease risk., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2022 Bjune, Strømland, Jersin, Mellgren and Dankel.)
- Published
- 2022
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.