1. Densified collagen tubular grafts for human tissue replacement and disease modelling applications.
- Author
-
Justin AW, Cammarata F, Guy AA, Estevez SR, Burgess S, Davaapil H, Stavropoulou-Tatla A, Ong J, Jacob AG, Saeb-Parsy K, Sinha S, and Markaki AE
- Subjects
- Humans, Biomedical Engineering, Hydrogels, Tissue Engineering methods, Collagen
- Abstract
There is a significant need across multiple indications for an off-the-shelf bioengineered tubular graft which fulfils the mechanical and biological requirements for implantation and function but does not necessarily require cells for manufacture or deployment. Herein, we present a tissue-like tubular construct using a cell-free, materials-based method of manufacture, utilizing densified collagen hydrogel. Our tubular grafts are seamless, mechanically strong, customizable in terms of lumen diameter and wall thickness, and display a uniform fibril density across the wall thickness and along the tube length. While the method enables acellular grafts to be generated rapidly, inexpensively, and to a wide range of specifications, the cell-compatible densification process also enables a high density of cells to be incorporated uniformly into the walls of the tubes, which we show can be maintained under perfusion culture. Additionally, the method enables tubes consisting of distinct cell domains with cellular configurations at the boundaries which may be useful for modelling aortic disease. Further, we demonstrate additional steps which allow for luminal surface patterning. These results highlight the universality of this approach and its potential for developing the next generation of bioengineered grafts., Competing Interests: Declaration of competing interest On behalf of all the authors, I declare that we have no competing interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2022. Published by Elsevier B.V.)
- Published
- 2023
- Full Text
- View/download PDF