1. Engineering a long acting, non-biased relaxin agonist using Protein-in-Protein technology.
- Author
-
Agoulnik IU, Kaftanovskaya EM, Myhr C, Bathgate RAD, Kocan M, Peng Y, Lindsay RM, DiStefano PS, and Agoulnik AI
- Subjects
- Animals, Humans, Mice, Protein Engineering methods, Male, Mice, Inbred C57BL, Cricetulus, HEK293 Cells, CHO Cells, Relaxin pharmacology, Receptors, G-Protein-Coupled agonists, Receptors, G-Protein-Coupled metabolism, Receptors, Peptide agonists, Receptors, Peptide metabolism, Receptors, Peptide genetics
- Abstract
The peptide hormone relaxin plays a critical role in tissue remodeling in a variety of tissues through activation of its cognate receptor, RXFP1. Relaxin's ability to modify extracellular matrices has provided a strong rationale for treating fibrosis in a variety of tissues. Treatment with recombinant relaxin peptides in clinical studies of heart failure has not yet proven useful, likely due to the short half-life of infused peptide. To circumvent this particular pharmacokinetic pitfall we have used a Protein-in-Protein (PiP) antibody technology described previously, to insert a single-chain human relaxin construct into the complementarity-determining region (CDR) of an immunoglobulin G (IgG) backbone, creating a relaxin molecule with a half-life of ∼4-5 days in mice. Relaxin-PiP biologics displaced Europium-labeled human relaxin in RXFP1-expressing cells and demonstrated full agonist activity on both human and mouse RXFP1 receptors. Relaxin-PiPs did not show signal transduction bias, as they activated cAMP in THP-1 cells, and cGMP and pERK signaling in primary human cardiac fibroblasts. In an induced carbon tetrachloride mouse model of liver fibrosis one relaxin-PiP, R2-PiP, caused reduction of liver lesions, ameliorated collagen accumulation in the liver with the corresponding reduction of Collagen1a1 gene expression, and increased cell proliferation in hepatic parenchyma. These relaxin biologics represent a novel approach to the design of a long-acting RXFP1 agonist to probe the clinical utility of relaxin/RXFP1 signaling to treat a variety of human fibrotic diseases., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Inc. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF