1. JOTROL, a Novel Formulation of Resveratrol, Shows Beneficial Effects in the 3xTg-AD Mouse Model1
- Author
-
Jessica L. Dennison, Claude-Henry Volmar, Farzaneh Modarresi, Danbing Ke, James Wang, Emilie Gravel, Sabrina Hammond-Vignini, Zuomei Li, James A. Timmons, Ines Lohse, Marshall A. Hayward, Shaun P. Brothers, and Claes Wahlestedt
- Subjects
Psychiatry and Mental health ,Clinical Psychology ,General Neuroscience ,General Medicine ,Geriatrics and Gerontology - Abstract
Background: Alzheimer’s disease (AD) has minimally effective treatments currently. High concentrations of resveratrol, a polyphenol antioxidant found in plants, have been reported to affect several AD-related and neuroprotective genes. To address the low bioavailability of resveratrol, we investigated a novel oral formulation of resveratrol, JOTROL™, that has shown increased pharmacokinetic properties compared to non-formulated resveratrol in animals and in humans. Objective: We hypothesized that equivalent doses of JOTROL, compared to non-formulated resveratrol, would result in greater brain exposure to resveratrol, and more efficacious responses on AD biomarkers. Methods: For sub-chronic reversal studies, 15-month-old male triple transgenic (APPSW/PS1M146V/TauP301L; 3xTg-AD) AD mice were treated orally with vehicle or 50 mg/kg JOTROL for 36 days. For prophylactic studies, male and female 3xTg-AD mice were similarly administered vehicle, 50 mg/kg JOTROL, or 50 mg/kg resveratrol for 9 months starting at 4 months of age. A behavioral battery was run, and mRNA and protein from brain and blood were analyzed for changes in AD-related gene and protein expression. Results: JOTROL displays significantly increased bioavailability over non-formulated resveratrol. Treatment with JOTROL resulted in AD-related gene expression changes (Adam10, Bace1, Bdnf, Psen1) some of which were brain region-dependent and sex-specific, as well as changes in inflammatory gene and cytokine levels. Conclusion: JOTROL may be effective as a prophylaxis and/or treatment for AD through increased expression and/or activation of neuroprotective genes, suppression of pro-inflammatory genes, and regulation of central and peripheral cytokine levels.
- Published
- 2022