1. Evaluation of newly synthesized 2-(thiophen-2-yl)-1H-indole derivatives as anticancer agents against HCT-116 cell proliferation via cell cycle arrest and down regulation of miR-25
- Author
-
Nagwa M. Abdelazeem, Shaimaa A. Gouhar, Cinderella A. Fahmy, Zeinab A. Elshahid, and Marwa El-Hussieny
- Subjects
(Methylene) bis (2-(thiophen-2-yl)-1H-indole) ,(2-(Thiophen-2-yl)-1H-indol-3-yl) methyl) aniline ,SSA ,Molecular docking ,HCT-116 ,C-Myc ,Medicine ,Science - Abstract
Abstract In the present study, we prepared new sixteen different derivatives. The first series were prepared (methylene)bis(2-(thiophen-2-yl)-1H-indole) derivatives which have (indole and thiophene rings) by excellent yield from the reaction (2 mmol) 2-(thiophen-2-yl)-1H-indole and (1 mmol) from aldehyde. The second series were synthesized (2-(thiophen-2-yl)-1H-indol-3-yl) methyl) aniline derivatives at a relatively low yield from multicomponent reaction of three components 2-(thiophen-2-yl)-1H-indole, N-methylaniline and desired aldehydes. The anticancer effect of the newly synthesized derivatives was determined against different cancers, colon, lung, breast and skin. The counter screening was done against normal Epithelial cells (RPE-1). The effect on cell cycle and mechanisms underlying of the antitumor effect were also studied. All new compounds were initially tested at a single dose of 100 μg/ml against this panel of 5 human tumor cell lines indicated that the compounds under investigation exhibit selective cytotoxicity against HCT-116 cell line and compounds (4g, 4a, 4c) showed potent anticancer activity against HCT-116 cell line with the inhibitory concentration IC50 values were, 7.1±0.07, 10.5± 0.07 and 11.9± 0.05 μΜ/ml respectively. Also, the active derivatives caused cell cycle arrest at the S and G2/M phase with significant(p
- Published
- 2024
- Full Text
- View/download PDF