7 results on '"Moon -- Exploration"'
Search Results
2. AMORE - Mission concept overview for a progressively independent and self-sustainable lunar habitat
- Author
-
Joshi, Apoorva, Korn, Christian, Magkos, Michail, Amara, Yassin, Anil, Abhishek, Bhattacherjee, Souktik, Dargent de Vicente, Sisinio, Haffmans, Patrick, Heinz, Nicolas, Hinkel, Andrea, Karakas, Merve, Kolchin, Aleksandar, Mani, Vipul, Skrypnyk, Ilja, Stadtmüller, Anne, Joshi, Apoorva, Korn, Christian, Magkos, Michail, Amara, Yassin, Anil, Abhishek, Bhattacherjee, Souktik, Dargent de Vicente, Sisinio, Haffmans, Patrick, Heinz, Nicolas, Hinkel, Andrea, Karakas, Merve, Kolchin, Aleksandar, Mani, Vipul, Skrypnyk, Ilja, and Stadtmüller, Anne
- Abstract
Throughout the last decade a renewed interest for lunar space exploration has been expressed through the announcements of many ambitious missions such as Artemis. Annually the Space Station Design Workshop (SSDW) tasks students and young professionals to design a space station concept in a con-current engineering environment. In line with the elevated interest on the Moon this year's SSDW was centred around a self-sustainable lunar habitat. This paper presents the conceptual design of Team Blue at the SSDW 2021. Advanced Moon Operations and Resource Extraction (AMORE) is conceptu-alized as a public-private cooperation for the creation of a lunar platform that acts as an outpost for human exploration and robotic In-situ Resources Utilization (ISRU). AMORE’s proposed location is near the rim of Shackleton Crater at the Lunar South Pole. This location provides opportunities in science and ISRU and favourable sun coverage and thermal conditions. The terrain offers a natural shield for debris and storage advantages for ISRU. The mission architecture allows for incremental crew size increase through a modular dome structure, an initial prioritization of ISRU and a sustainable resource management strategy. Based on the identified system requirements, the initial configuration envisions one core module and two modular structures that would serve as greenhouses or living spaces. The phasing of the base assembly is designed to allow for adequate conditions of an increasing crew size capacity. The greenhouse modules are designed to provide all required oxygen and most required food supply. The modules are constructed using lightweight inflatable structures, while a regolith shell will provide radiation as well as thermal and micrometeorite protection. For reliable communication, a cus-tom relay network named Lunar Earth Telecommand Telemetry Relay (LETTER) is proposed. The mis-sion architecture analysis includes several methods to financially utilize the mission. These include
- Published
- 2022
3. Designing greenhouse subsystems for a lunar mission: the LOOPS - M Project
- Author
-
Restivo Alessi, Riccardo, Metelli, Giulio, Bergami, Alessio, Furlani, Luca, Garegnani, Marco, Pagliarello, Riccardo, Boscia, Michela, Piras, Michela, Kumar, Sidhant, Torrini, Tommaso, Picariello, William, Salvitti, Damiano, Pirolo, Carlo, Monello, Tommaso, Dragonetti, Walter, Martinelli, Stefano, Panetti, Marco, Pozzi, Chiara, Gargari, Matteo, Torlontano, Sofia, Marzioli, Paolo, Gugliermetti, Luca, Nardi, Luca, Lampazzi, Elena, Benvenuto, Eugenio, Santoni, Fabio, Restivo Alessi, Riccardo, Metelli, Giulio, Bergami, Alessio, Furlani, Luca, Garegnani, Marco, Pagliarello, Riccardo, Boscia, Michela, Piras, Michela, Kumar, Sidhant, Torrini, Tommaso, Picariello, William, Salvitti, Damiano, Pirolo, Carlo, Monello, Tommaso, Dragonetti, Walter, Martinelli, Stefano, Panetti, Marco, Pozzi, Chiara, Gargari, Matteo, Torlontano, Sofia, Marzioli, Paolo, Gugliermetti, Luca, Nardi, Luca, Lampazzi, Elena, Benvenuto, Eugenio, and Santoni, Fabio
- Abstract
The 2020s is a very important decade in the space sector, where international cooperation is moving towards the exploration of the Moon and will lead to stable lunar settlements, which will require new, innovative, and efficient technologies. In this context, the project LOOPS–M (Lunar Operative Outpost for the Production and Storage of Microgreens) was created by students from Sapienza University of Rome with the objective of designing some of the main features of a lunar greenhouse. The project was developed for the IGLUNA 2021 campaign, an interdisciplinary platform coordinated by Space Innovation as part of the ESA Lab@ initiative. The LOOPS-M mission was successfully concluded during the Virtual Field Campaign that took place in July 2021. This project is a follow-up of the V-GELM Project, which took part in IGLUNA 2020 with the realization in Virtual Reality of a Lunar Greenhouse: a simulation of the main operations connected to the cultivation module, the HORT3 , which was already developed by ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development) during the AMADEE-18 mission inside the HORTSPACE project. This paper will briefly describe the main features designed and developed for the lunar greenhouse and their simulation in a VR environment: an autonomous cultivation system able to handle the main cultivation tasks of the previous cultivation system, a bioconversion system that can recycle into new resources the cultivation waste with the use of insects as a biodegradation system, and a shield able of withstanding hypervelocity impacts and the harsh lunar environment. A wide overview of the main challenges faced, and lessons learned by the team to obtain these results, will be given. The first challenge was the initial inexperience that characterized all the team members, being for most the first experience with an activity structured as a space mission, starting with little to no know-how regarding the software and
- Published
- 2022
4. Hàbitats humans per a altres mons
- Author
-
Universitat Politècnica de Catalunya. Departament de Física, Moreno Lupiáñez, Manuel, Pérez Jiménez, Alvaro, Universitat Politècnica de Catalunya. Departament de Física, Moreno Lupiáñez, Manuel, and Pérez Jiménez, Alvaro
- Abstract
Per a descobrir la viabilitat de la creació i transport d'un hàbitat per altres mons, cal realitzar infinitud d'estudis per poder portar-ho a la realitat. Aquest projecte se centrarà en el disseny i dimensionament d'un hàbitat, en la destinació dels espais i la maquinària mínima necessària per a la vida en altres indrets del sistema solar. Per començar el projecte s'haurà de trobar quin mitjà de transport podrà portar l'habitacle fins a la Lluna, d'aquest haurem d'obtenir la càrrega útil i dimensions màximes admissibles. En el moment que sapiguem com arribar, seria crucial buscar una font d'energia, la qual aportarà electricitat a tota la maquinària destinada al suport de vida i als aparells d'ús quotidià. En dissenyar l'habitacle caldrà saber a quins riscos estarà exposat, cal remarcar que la Lluna és considerat un medi extrem, on hi ha grans nivells de radiació còsmica i materials tòxics pels humans. També cal dir que la falta per descobrir molta informació sobre el nostre satèl·lit, com l'estabilitat del terra, ubicació d'aigua, zones en foscor continua tot això també suposa un risc. La selecció de materials serà rellevant per aquesta missió, ja que s'haurà d'escollir els que tinguin majors prestacions amb la menor densitat possible, per mantenir un baix pes. També s'haurà de tindre en compte els materials que s'utilitzaran per a protegir-se de les temperatures extremes, la radiació i els impactes dels meteorits. Un cop hàgim seleccionat el material estructural es podrà procedir al dimensionament de les bigues estructurals gràcies a càlculs teòrics els quals seran comprovats amb simulacions. Si les simulacions són positives el pas següent, serà el càlcul del pes de l'estructura. I serà sumat el pes de la maquinària, mobiliari, alimentació i aigua i oxigen. Un cop el pes total sigui calculat serà comparat amb la càrrega màxima admissible i en el cas que sigui inferior, sabrem que la missió podria ser viable. En cas afirmatiu, es podrà pressupostar el capital mínim, In order to discover the feasibility of developing and transporting a habitat to other worlds, it’s necessary to analyze and create a lot of different studies to bring this to reality. This project focuses on the design and sizing of a habitat, the analyze of the best location of rooms and the minimum machines and devices needed for life in other spaces of the solar system. In order to start this project, we should find the best way to transport the living space from the Earth to the Moon, and to analyze the range of maximum payload and allowable dimensions. Once we know how to arrive, it would be crucial to look for a source of energy, that will provide electricity to the life support devices and to the domestic appliances. When designing the living structure, it will be necessary to know the risks to which it will be exposed to, as the Moon is considered an extreme environment with high levels of cosmic radiation and toxic materials for human beings. We should also have in mind that there is a relevant lack of information regarding our satellite as the stability of the land, the water location and the areas in permanent darkness that add additional risks to our project. The selection of materials will be most relevant for this mission, as the maximum performance with the lowest possible density has to be selected, in order to maintain a low level of load. The chosen materials must protect against extreme temperatures, radiation, and meteorite impacts. Once the structural material has been selected, we should start sizing the structural elements using theoretical calculations that will be verified simulations. If the simulations are positive, the next step will be calculating the weight of the structure, algo taking into consideration, the weight of the machines, furniture, food, water, and oxygen. Once the total weight has been calculated, it needs to be compared to the maximum allowable load and, in the event that is still lower, we will know that the mission cou
- Published
- 2022
5. Designing greenhouse subsystems for a lunar mission: the LOOPS - M Project
- Author
-
Riccardo Restivo Alessi, Giulio Metelli, Alessio Bergami, Luca Furlani, Marco Garegnani, Riccardo Pagliarello, Michela Boscia, Michela Piras, Sidhant Kumar, Tommaso Torrini, William Picariello, Damiano Salvitti, Carlo Pirolo, Tommaso Monello, Walter Dragonetti, Stefano Martinelli, Marco Panetti, Chiara Pozzi, Matteo Gargari, Sofia Torlontano, Paolo Marzioli, Luca Gugliermetti, Luca Nardi, Elena Lampazzi, Eugenio Benvenuto, and Fabio Santoni
- Subjects
IGLUNA ,Lluna -- Exploració ,Aeronàutica i espai::Astronàutica::Enginyeria aeroespacial [Àrees temàtiques de la UPC] ,Moon -- Exploration ,Education ,LOOPS-M - Abstract
The 2020s is a very important decade in the space sector, where international cooperation is moving towards the exploration of the Moon and will lead to stable lunar settlements, which will require new, innovative, and efficient technologies. In this context, the project LOOPS–M (Lunar Operative Outpost for the Production and Storage of Microgreens) was created by students from Sapienza University of Rome with the objective of designing some of the main features of a lunar greenhouse. The project was developed for the IGLUNA 2021 campaign, an interdisciplinary platform coordinated by Space Innovation as part of the ESA Lab@ initiative. The LOOPS-M mission was successfully concluded during the Virtual Field Campaign that took place in July 2021. This project is a follow-up of the V-GELM Project, which took part in IGLUNA 2020 with the realization in Virtual Reality of a Lunar Greenhouse: a simulation of the main operations connected to the cultivation module, the HORT3 , which was already developed by ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development) during the AMADEE-18 mission inside the HORTSPACE project. This paper will briefly describe the main features designed and developed for the lunar greenhouse and their simulation in a VR environment: an autonomous cultivation system able to handle the main cultivation tasks of the previous cultivation system, a bioconversion system that can recycle into new resources the cultivation waste with the use of insects as a biodegradation system, and a shield able of withstanding hypervelocity impacts and the harsh lunar environment. A wide overview of the main challenges faced, and lessons learned by the team to obtain these results, will be given. The first challenge was the initial inexperience that characterized all the team members, being for most the first experience with an activity structured as a space mission, starting with little to no know-how regarding the software and hardware needed for the project, and how to structure documentation and tasks, which was acquired throughout the year. An added difficulty was the nature of LOOPS-M, which included very different objectives that required different fields of expertise, ranging from various engineering sectors to biology and entomology. During the year, the team managed to learn how to handle all these hurdles and the organizational standpoint, working as a group, even if remotely due to the Covid-19 pandemic. Through careful planning, hard work and the help of supervisors, the activity was carried out through reviews, up to the prototyping phase and the test campaign with a successful outcome in each aspect of the project. By the end of the year everyone involved had acquired new knowledge, both practical and theoretical, and learned how to reach out and present their work to sponsors and to the scientific community.
- Published
- 2022
- Full Text
- View/download PDF
6. AMORE - Mission concept overview for a progressively independent and self-sustainable lunar habitat
- Author
-
Apoorva Joshi, Christian Korn, Michail Magkos, Yassin Amara, Abhishek Anil, Souktik Bhattacherjee, Sisinio Dargent de Vicente, Patrick Haffmans, Nicolas Heinz, Andrea Hinkel, Merve Karakas, Aleksandar Kolchin, Vipul Mani, Ilja Skrypnyk, and Anne Stadtmüller
- Subjects
Outer space -- Exploration ,ISRU ,SSDW ,Space stations ,AMORE ,Espai exterior -- Exploració ,Lunar-base ,Self-sustainability ,Estacions espacials ,Space-exploration ,Lluna -- Exploració ,Moon -- Exploration ,Moon ,Aeronàutica i espai::Astronàutica [Àrees temàtiques de la UPC] - Abstract
Throughout the last decade a renewed interest for lunar space exploration has been expressed through the announcements of many ambitious missions such as Artemis. Annually the Space Station Design Workshop (SSDW) tasks students and young professionals to design a space station concept in a con-current engineering environment. In line with the elevated interest on the Moon this year's SSDW was centred around a self-sustainable lunar habitat. This paper presents the conceptual design of Team Blue at the SSDW 2021. Advanced Moon Operations and Resource Extraction (AMORE) is conceptu-alized as a public-private cooperation for the creation of a lunar platform that acts as an outpost for human exploration and robotic In-situ Resources Utilization (ISRU). AMORE’s proposed location is near the rim of Shackleton Crater at the Lunar South Pole. This location provides opportunities in science and ISRU and favourable sun coverage and thermal conditions. The terrain offers a natural shield for debris and storage advantages for ISRU. The mission architecture allows for incremental crew size increase through a modular dome structure, an initial prioritization of ISRU and a sustainable resource management strategy. Based on the identified system requirements, the initial configuration envisions one core module and two modular structures that would serve as greenhouses or living spaces. The phasing of the base assembly is designed to allow for adequate conditions of an increasing crew size capacity. The greenhouse modules are designed to provide all required oxygen and most required food supply. The modules are constructed using lightweight inflatable structures, while a regolith shell will provide radiation as well as thermal and micrometeorite protection. For reliable communication, a cus-tom relay network named Lunar Earth Telecommand Telemetry Relay (LETTER) is proposed. The mis-sion architecture analysis includes several methods to financially utilize the mission. These include a range of services on the lunar surface such as training facilities for deep space missions, leasing habitats to other Moon explorers, and performing scientific and technological demonstrations. A variety of rovers will be used throughout the mission that will assist in various aspects. In addition to this, a scalable hybrid power generation system that utilizes the abundant sunlight and nuclear energy assures a suffi-cient power supply throughout the entire mission lifetime. This research presents a holistic architecture for a Moon base, which provides an approach to initially utilize the Moon. Within this context, the mission concept is primarily based on already existing or currently in-development technologies. Hence, AMORE offers an approach for a financially and technologically feasible as well as a continuous and expandable human presence on the lunar surface
- Published
- 2022
7. Hàbitats humans per a altres mons
- Author
-
Pérez Jiménez, Alvaro, Moreno Lupiáñez, Manuel, and Universitat Politècnica de Catalunya. Departament de Física
- Subjects
Material estructural ,Life suport ,Structural material ,Space colonies ,Payload ,Termal protection ,Suport de vida ,Space distribution ,Space stations ,Protecció tèrmica ,Habitats on the Moon ,Distribució d’espais ,Estacions espacials ,Protecció radiològica ,Hàbitats a la Lluna ,Regolita ,Estructura ,Lluna -- Exploració ,Moon -- Exploration ,Aeronàutica i espai::Astronàutica [Àrees temàtiques de la UPC] ,Colònies espacials ,Carrega útil ,Radiological protection - Abstract
Per a descobrir la viabilitat de la creació i transport d'un hàbitat per altres mons, cal realitzar infinitud d'estudis per poder portar-ho a la realitat. Aquest projecte se centrarà en el disseny i dimensionament d'un hàbitat, en la destinació dels espais i la maquinària mínima necessària per a la vida en altres indrets del sistema solar. Per començar el projecte s'haurà de trobar quin mitjà de transport podrà portar l'habitacle fins a la Lluna, d'aquest haurem d'obtenir la càrrega útil i dimensions màximes admissibles. En el moment que sapiguem com arribar, seria crucial buscar una font d'energia, la qual aportarà electricitat a tota la maquinària destinada al suport de vida i als aparells d'ús quotidià. En dissenyar l'habitacle caldrà saber a quins riscos estarà exposat, cal remarcar que la Lluna és considerat un medi extrem, on hi ha grans nivells de radiació còsmica i materials tòxics pels humans. També cal dir que la falta per descobrir molta informació sobre el nostre satèl·lit, com l'estabilitat del terra, ubicació d'aigua, zones en foscor continua tot això també suposa un risc. La selecció de materials serà rellevant per aquesta missió, ja que s'haurà d'escollir els que tinguin majors prestacions amb la menor densitat possible, per mantenir un baix pes. També s'haurà de tindre en compte els materials que s'utilitzaran per a protegir-se de les temperatures extremes, la radiació i els impactes dels meteorits. Un cop hàgim seleccionat el material estructural es podrà procedir al dimensionament de les bigues estructurals gràcies a càlculs teòrics els quals seran comprovats amb simulacions. Si les simulacions són positives el pas següent, serà el càlcul del pes de l'estructura. I serà sumat el pes de la maquinària, mobiliari, alimentació i aigua i oxigen. Un cop el pes total sigui calculat serà comparat amb la càrrega màxima admissible i en el cas que sigui inferior, sabrem que la missió podria ser viable. En cas afirmatiu, es podrà pressupostar el capital mínim In order to discover the feasibility of developing and transporting a habitat to other worlds, it’s necessary to analyze and create a lot of different studies to bring this to reality. This project focuses on the design and sizing of a habitat, the analyze of the best location of rooms and the minimum machines and devices needed for life in other spaces of the solar system. In order to start this project, we should find the best way to transport the living space from the Earth to the Moon, and to analyze the range of maximum payload and allowable dimensions. Once we know how to arrive, it would be crucial to look for a source of energy, that will provide electricity to the life support devices and to the domestic appliances. When designing the living structure, it will be necessary to know the risks to which it will be exposed to, as the Moon is considered an extreme environment with high levels of cosmic radiation and toxic materials for human beings. We should also have in mind that there is a relevant lack of information regarding our satellite as the stability of the land, the water location and the areas in permanent darkness that add additional risks to our project. The selection of materials will be most relevant for this mission, as the maximum performance with the lowest possible density has to be selected, in order to maintain a low level of load. The chosen materials must protect against extreme temperatures, radiation, and meteorite impacts. Once the structural material has been selected, we should start sizing the structural elements using theoretical calculations that will be verified simulations. If the simulations are positive, the next step will be calculating the weight of the structure, algo taking into consideration, the weight of the machines, furniture, food, water, and oxygen. Once the total weight has been calculated, it needs to be compared to the maximum allowable load and, in the event that is still lower, we will know that the mission cou
- Published
- 2022
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.