10 results on '"Musholt, Petra B."'
Search Results
2. Discovery of drug–omics associations in type 2 diabetes with generative deep-learning models
- Author
-
Allesøe, Rosa Lundbye, Lundgaard, Agnete Troen, Hernández Medina, Ricardo, Aguayo-Orozco, Alejandro, Johansen, Joachim, Nissen, Jakob Nybo, Brorsson, Caroline, Mazzoni, Gianluca, Niu, Lili, Biel, Jorge Hernansanz, Leal Rodríguez, Cristina, Brasas, Valentas, Webel, Henry, Benros, Michael Eriksen, Pedersen, Anders Gorm, Chmura, Piotr Jaroslaw, Jacobsen, Ulrik Plesner, Mari, Andrea, Koivula, Robert, Mahajan, Anubha, Vinuela, Ana, Tajes, Juan Fernandez, Sharma, Sapna, Haid, Mark, Hong, Mun-Gwan, Musholt, Petra B., De Masi, Federico, Vogt, Josef, Pedersen, Helle Krogh, Gudmundsdottir, Valborg, Jones, Angus, Kennedy, Gwen, Bell, Jimmy, Thomas, E. Louise, Frost, Gary, Thomsen, Henrik, Hansen, Elizaveta, Hansen, Tue Haldor, Vestergaard, Henrik, Muilwijk, Mirthe, Blom, Marieke T., ‘t Hart, Leen M., Pattou, Francois, Raverdy, Violeta, Brage, Soren, Kokkola, Tarja, Heggie, Alison, McEvoy, Donna, Mourby, Miranda, Kaye, Jane, Hattersley, Andrew, McDonald, Timothy, Ridderstråle, Martin, Walker, Mark, Forgie, Ian, Giordano, Giuseppe N., Pavo, Imre, Ruetten, Hartmut, Pedersen, Oluf, Hansen, Torben, Dermitzakis, Emmanouil, Franks, Paul W., Schwenk, Jochen M., Adamski, Jerzy, McCarthy, Mark I., Pearson, Ewan, Banasik, Karina, Rasmussen, Simon, and Brunak, Søren
- Published
- 2023
- Full Text
- View/download PDF
3. Author Correction: Discovery of drug–omics associations in type 2 diabetes with generative deep-learning models
- Author
-
Allesøe, Rosa Lundbye, Lundgaard, Agnete Troen, Hernández Medina, Ricardo, Aguayo-Orozco, Alejandro, Johansen, Joachim, Nissen, Jakob Nybo, Brorsson, Caroline, Mazzoni, Gianluca, Niu, Lili, Biel, Jorge Hernansanz, Leal Rodríguez, Cristina, Brasas, Valentas, Webel, Henry, Benros, Michael Eriksen, Pedersen, Anders Gorm, Chmura, Piotr Jaroslaw, Jacobsen, Ulrik Plesner, Mari, Andrea, Koivula, Robert, Mahajan, Anubha, Vinuela, Ana, Tajes, Juan Fernandez, Sharma, Sapna, Haid, Mark, Hong, Mun-Gwan, Musholt, Petra B., De Masi, Federico, Vogt, Josef, Pedersen, Helle Krogh, Gudmundsdottir, Valborg, Jones, Angus, Kennedy, Gwen, Bell, Jimmy, Thomas, E. Louise, Frost, Gary, Thomsen, Henrik, Hansen, Elizaveta, Hansen, Tue Haldor, Vestergaard, Henrik, Muilwijk, Mirthe, Blom, Marieke T., ‘t Hart, Leen M., Pattou, Francois, Raverdy, Violeta, Brage, Soren, Kokkola, Tarja, Heggie, Alison, McEvoy, Donna, Mourby, Miranda, Kaye, Jane, Hattersley, Andrew, McDonald, Timothy, Ridderstråle, Martin, Walker, Mark, Forgie, Ian, Giordano, Giuseppe N., Pavo, Imre, Ruetten, Hartmut, Pedersen, Oluf, Hansen, Torben, Dermitzakis, Emmanouil, Franks, Paul W., Schwenk, Jochen M., Adamski, Jerzy, McCarthy, Mark I., Pearson, Ewan, Banasik, Karina, Rasmussen, Simon, and Brunak, Søren
- Published
- 2023
- Full Text
- View/download PDF
4. Discovery of drug-omics associations in type 2 diabetes with generative deep-learning models:[with Author Correction]
- Author
-
Allesøe, Rosa Lundbye, Lundgaard, Agnete Troen, Hernández Medina, Ricardo, Aguayo-Orozco, Alejandro, Johansen, Joachim, Nissen, Jakob Nybo, Brorsson, Caroline, Mazzoni, Gianluca, Niu, Lili, Biel, Jorge Hernansanz, Brasas, Valentas, Webel, Henry, Benros, Michael Eriksen, Pedersen, Anders Gorm, Chmura, Piotr Jaroslaw, Jacobsen, Ulrik Plesner, Mari, Andrea, Koivula, Robert, Mahajan, Anubha, Vinuela, Ana, Tajes, Juan Fernandez, Sharma, Sapna, Haid, Mark, Hong, Mun-Gwan, Musholt, Petra B, De Masi, Federico, Vogt, Josef, Pedersen, Helle Krogh, Gudmundsdottir, Valborg, Jones, Angus, Kennedy, Gwen, Bell, Jimmy, Thomas, E Louise, Frost, Gary, Thomsen, Henrik, Hansen, Elizaveta, Hansen, Tue Haldor, Vestergaard, Henrik, Muilwijk, Mirthe, Blom, Marieke T, 't Hart, Leen M, Pattou, Francois, Raverdy, Violeta, Brage, Soren, Ridderstråle, Martin, Pedersen, Oluf, Hansen, Torben, Banasik, Karina, Rasmussen, Simon, Brunak, Søren, Allesøe, Rosa Lundbye, Lundgaard, Agnete Troen, Hernández Medina, Ricardo, Aguayo-Orozco, Alejandro, Johansen, Joachim, Nissen, Jakob Nybo, Brorsson, Caroline, Mazzoni, Gianluca, Niu, Lili, Biel, Jorge Hernansanz, Brasas, Valentas, Webel, Henry, Benros, Michael Eriksen, Pedersen, Anders Gorm, Chmura, Piotr Jaroslaw, Jacobsen, Ulrik Plesner, Mari, Andrea, Koivula, Robert, Mahajan, Anubha, Vinuela, Ana, Tajes, Juan Fernandez, Sharma, Sapna, Haid, Mark, Hong, Mun-Gwan, Musholt, Petra B, De Masi, Federico, Vogt, Josef, Pedersen, Helle Krogh, Gudmundsdottir, Valborg, Jones, Angus, Kennedy, Gwen, Bell, Jimmy, Thomas, E Louise, Frost, Gary, Thomsen, Henrik, Hansen, Elizaveta, Hansen, Tue Haldor, Vestergaard, Henrik, Muilwijk, Mirthe, Blom, Marieke T, 't Hart, Leen M, Pattou, Francois, Raverdy, Violeta, Brage, Soren, Ridderstråle, Martin, Pedersen, Oluf, Hansen, Torben, Banasik, Karina, Rasmussen, Simon, and Brunak, Søren
- Abstract
The application of multiple omics technologies in biomedical cohorts has the potential to reveal patient-level disease characteristics and individualized response to treatment. However, the scale and heterogeneous nature of multi-modal data makes integration and inference a non-trivial task. We developed a deep-learning-based framework, multi-omics variational autoencoders (MOVE), to integrate such data and applied it to a cohort of 789 people with newly diagnosed type 2 diabetes with deep multi-omics phenotyping from the DIRECT consortium. Using in silico perturbations, we identified drug-omics associations across the multi-modal datasets for the 20 most prevalent drugs given to people with type 2 diabetes with substantially higher sensitivity than univariate statistical tests. From these, we among others, identified novel associations between metformin and the gut microbiota as well as opposite molecular responses for the two statins, simvastatin and atorvastatin. We used the associations to quantify drug-drug similarities, assess the degree of polypharmacy and conclude that drug effects are distributed across the multi-omics modalities.
- Published
- 2023
5. Venglustat combined with imiglucerase for neurological disease in adults with Gaucher disease type 3: the LEAP trial
- Author
-
Schiffmann, Raphael, primary, Cox, Timothy M, additional, Dedieu, Jean-François, additional, Gaemers, Sebastiaan J M, additional, Hennermann, Julia B, additional, Ida, Hiroyuki, additional, Mengel, Eugen, additional, Minini, Pascal, additional, Mistry, Pramod, additional, Musholt, Petra B, additional, Scott, David, additional, Sharma, Jyoti, additional, and Peterschmitt, M Judith, additional
- Published
- 2022
- Full Text
- View/download PDF
6. Evaluation of intraoperative neuromonitoring (IONM) data with the Mainz IONM Quality Assurance and Analysis tool.
- Author
-
Musholt, Thomas J, Staubitz, Julia I, and Musholt, Petra B
- Subjects
LARYNGEAL nerves ,RECURRENT laryngeal nerve ,VAGUS nerve ,QUALITY assurance ,INTRAOPERATIVE monitoring ,REFERENCE values ,NEUROPHYSIOLOGIC monitoring - Abstract
Background Intraoperative neuromonitoring is widely used in thyroid and parathyroid surgery to prevent unilateral and especially bilateral recurrent nerve paresis. Reference values for amplitude and latency for the recurrent laryngeal nerve and vagus nerve have been published. However, data quality measures that exclude errors of the underlying intraoperative neuromonitoring (IONM) data (immanent software errors, false data labelling) before statistical analysis have not yet been implemented. Methods The authors developed an easy-to-use application (the Mainz IONM Quality Assurance and Analysis tool) using the programming language R. This tool allows visualization, automated and manual correction, and statistical analysis of complete raw data sets (electromyogram signals of all stimulations) from intermittent and continuous neuromonitoring in thyroid and parathyroid surgery. The Mainz IONM Quality Assurance and Analysis tool was used to evaluate IONM data generated and exported from 'C2' and 'C2 Xplore' neuromonitoring devices (inomed Medizintechnik GmbH) after surgery. For the first time, reference values for latency and amplitude were calculated based on 'cleaned' IONM data. Results Intraoperative neuromonitoring data files of 1935 patients consecutively operated on from June 2014 to May 2020 were included. Of 1921 readable files, 34 were excluded for missing data labelling. Automated plausibility checks revealed: less than 3 per cent device errors for electromyogram signal detection; 1138 files (approximately 60 per cent) contained potential labelling errors or inconsistencies necessitating manual review; and 915 files (48.5 per cent) were indeed erroneous. Mean(s.d.) reference onset latencies for the left vagus nerve, right vagus nerve, recurrent laryngeal nerve, and external branch of the superior laryngeal nerve were 6.8(1.1), 4.2(0.8), 2.5(1.1), and 2.1(0.5) ms, respectively. Conclusion Due to high error frequencies, IONM data should undergo in-depth review and multi-step cleaning processes before analysis to standardize scientific reporting. Device software calculates latencies differently; therefore reference values are device-specific (latency) and/or set-up-specific (amplitude). Novel C2-specific reference values for latency and amplitude deviate considerably from published values. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
7. Subcutaneous (SC) isatuximab administration by an on-body delivery system (OBDS) in combination with pomalidomide-dexamethasone (Pd) in patients with relapsed/refractory multiple myeloma (RRMM): Interim phase 1b study results.
- Author
-
Quach, Hang, primary, Parmar, Gurdeep, additional, Ocio, Enrique, additional, Prince, H. Miles, additional, Oriol Rocafiguera, Albert, additional, Tsukada, Nobuhiro, additional, Sunami, Kazutaka, additional, Bories, Pierre, additional, Karanes, Chatchada, additional, Madan, Sumit, additional, Semiond, Dorothee, additional, Inchauspe, Marlene, additional, Macé, Sandrine, additional, Musholt, Petra B., additional, Suzan, Florence, additional, and Moreau, Philippe, additional
- Published
- 2022
- Full Text
- View/download PDF
8. Four groups of type 2 diabetes contribute to the etiological and clinical heterogeneity in newly diagnosed individuals: An IMI DIRECT study
- Author
-
Wesolowska-Andersen, Agata, primary, Brorsson, Caroline A., additional, Bizzotto, Roberto, additional, Mari, Andrea, additional, Tura, Andrea, additional, Koivula, Robert, additional, Mahajan, Anubha, additional, Vinuela, Ana, additional, Tajes, Juan Fernandez, additional, Sharma, Sapna, additional, Haid, Mark, additional, Prehn, Cornelia, additional, Artati, Anna, additional, Hong, Mun-Gwan, additional, Musholt, Petra B., additional, Kurbasic, Azra, additional, De Masi, Federico, additional, Tsirigos, Kostas, additional, Pedersen, Helle Krogh, additional, Gudmundsdottir, Valborg, additional, Thomas, Cecilia Engel, additional, Banasik, Karina, additional, Jennison, Chrisopher, additional, Jones, Angus, additional, Kennedy, Gwen, additional, Bell, Jimmy, additional, Thomas, Louise, additional, Frost, Gary, additional, Thomsen, Henrik, additional, Allin, Kristine, additional, Hansen, Tue Haldor, additional, Vestergaard, Henrik, additional, Hansen, Torben, additional, Rutters, Femke, additional, Elders, Petra, additional, t’Hart, Leen, additional, Bonnefond, Amelie, additional, Canouil, Mickaël, additional, Brage, Soren, additional, Kokkola, Tarja, additional, Heggie, Alison, additional, McEvoy, Donna, additional, Hattersley, Andrew, additional, McDonald, Timothy, additional, Teare, Harriet, additional, Ridderstrale, Martin, additional, Walker, Mark, additional, Forgie, Ian, additional, Giordano, Giuseppe N., additional, Froguel, Philippe, additional, Pavo, Imre, additional, Ruetten, Hartmut, additional, Pedersen, Oluf, additional, Dermitzakis, Emmanouil, additional, Franks, Paul W., additional, Schwenk, Jochen M., additional, Adamski, Jerzy, additional, Pearson, Ewan, additional, McCarthy, Mark I., additional, and Brunak, Søren, additional
- Published
- 2022
- Full Text
- View/download PDF
9. Venglustat combined with imiglucerase for neurological disease in adults with Gaucher disease type 3: the LEAP trial.
- Author
-
Schiffmann, Raphael, Cox, Timothy M, Dedieu, Jean-François, Gaemers, Sebastiaan J M, Hennermann, Julia B, Ida, Hiroyuki, Mengel, Eugen, Minini, Pascal, Mistry, Pramod, Musholt, Petra B, Scott, David, Sharma, Jyoti, and Peterschmitt, M Judith
- Subjects
GAUCHER'S disease ,NEUROLOGICAL disorders ,GLYCOGEN storage disease type II ,ENZYME replacement therapy ,DRUG dosage ,FUNCTIONAL magnetic resonance imaging ,THROMBOPOIETIN receptors - Abstract
Gaucher disease type 3 is a chronic neuronopathic disorder with wide-ranging effects, including hepatosplenomegaly, anaemia, thrombocytopenia, skeletal disease and diverse neurological manifestations. Biallelic mutations in GBA1 reduce lysosomal acid β-glucosidase activity, and its substrates, glucosylceramide and glucosylsphingosine, accumulate. Enzyme replacement therapy and substrate reduction therapy ameliorate systemic features of Gaucher disease, but no therapies are approved for neurological manifestations. Venglustat is an investigational, brain-penetrant, glucosylceramide synthase inhibitor with potential to improve the disease by rebalancing influx of glucosylceramide with impaired lysosomal recycling. The Phase 2, open-label LEAP trial (NCT02843035) evaluated orally administered venglustat 15 mg once-daily in combination with maintenance dose of imiglucerase enzyme replacement therapy during 1 year of treatment in 11 adults with Gaucher disease type 3. Primary endpoints were venglustat safety and tolerability and change in concentration of glucosylceramide and glucosylsphingosine in CSF from baseline to Weeks 26 and 52. Secondary endpoints included change in plasma concentrations of glucosylceramide and glucosylsphingosine, venglustat pharmacokinetics in plasma and CSF, neurologic function, infiltrative lung disease and systemic disease parameters. Exploratory endpoints included changes in brain volume assessed with volumetric MRI using tensor-based morphometry, and resting functional MRI analysis of regional brain activity and connectivity between resting state networks. Mean (SD) plasma venglustat AUC
0-24 on Day 1 was 851 (282) ng•h/ml; Cmax of 58.1 (26.4) ng/ml was achieved at a median tmax 2.00 h. After once-daily venglustat, plasma concentrations (4 h post-dose) were higher compared with Day 1, indicating ∼2-fold accumulation. One participant (Patient 9) had low-to-undetectable venglustat exposure at Weeks 26 and 52. Based on mean plasma and CSF venglustat concentrations (excluding Patient 9), steady state appeared to be reached on or before Week 4. Mean (SD) venglustat concentration at Week 52 was 114 (65.8) ng/ml in plasma and 6.14 (3.44) ng/ml in CSF. After 1 year of treatment, median (inter-quartile range) glucosylceramide decreased 78% (72, 84) in plasma and 81% (77, 83) in CSF; median (inter-quartile range) glucosylsphingosine decreased 56% (41, 60) in plasma and 70% (46, 76) in CSF. Ataxia improved slightly in nine patients: mean (SD, range) total modified Scale for Assessment and Rating of Ataxia score decreased from 2.68 [1.54 (0.0 to 5.5)] at baseline to 1.55 [1.88 (0.0 to 5.0)] at Week 52 [mean change: −1.14 (95% CI: −2.06 to −0.21)]. Whole brain volume increased slightly in patients with venglustat exposure and biomarker reduction in CSF (306.7 ± 4253.3 mm3 ) and declined markedly in Patient 9 (−13894.8 mm3 ). Functional MRI indicated stronger connectivity at Weeks 26 and 52 relative to baseline between a broadly distributed set of brain regions in patients with venglustat exposure and biomarker reduction but not Patient 9, although neurocognition, assessed by Vineland II, deteriorated in all domains over time, which illustrates disease progression despite the intervention. There were no deaths, serious adverse events or discontinuations. In adults with Gaucher disease type 3 receiving imiglucerase, addition of once-daily venglustat showed acceptable safety and tolerability and preliminary evidence of clinical stability with intriguing but intrinsically inconsistent signals in selected biomarkers, which need to be validated and confirmed in future research. [ABSTRACT FROM AUTHOR]- Published
- 2023
- Full Text
- View/download PDF
10. Venglustat combined with imiglucerase for neurological disease in adults with Gaucher disease type 3: the LEAP trial.
- Author
-
Schiffmann R, Cox TM, Dedieu JF, Gaemers SJM, Hennermann JB, Ida H, Mengel E, Minini P, Mistry P, Musholt PB, Scott D, Sharma J, and Peterschmitt MJ
- Subjects
- Humans, Adult, Glucosylceramidase therapeutic use, Glucosylceramidase genetics, Glucosylceramides therapeutic use, Chronic Disease, Biomarkers, Ataxia, Gaucher Disease drug therapy, Gaucher Disease genetics, Nervous System Diseases drug therapy
- Abstract
Gaucher disease type 3 is a chronic neuronopathic disorder with wide-ranging effects, including hepatosplenomegaly, anaemia, thrombocytopenia, skeletal disease and diverse neurological manifestations. Biallelic mutations in GBA1 reduce lysosomal acid β-glucosidase activity, and its substrates, glucosylceramide and glucosylsphingosine, accumulate. Enzyme replacement therapy and substrate reduction therapy ameliorate systemic features of Gaucher disease, but no therapies are approved for neurological manifestations. Venglustat is an investigational, brain-penetrant, glucosylceramide synthase inhibitor with potential to improve the disease by rebalancing influx of glucosylceramide with impaired lysosomal recycling. The Phase 2, open-label LEAP trial (NCT02843035) evaluated orally administered venglustat 15 mg once-daily in combination with maintenance dose of imiglucerase enzyme replacement therapy during 1 year of treatment in 11 adults with Gaucher disease type 3. Primary endpoints were venglustat safety and tolerability and change in concentration of glucosylceramide and glucosylsphingosine in CSF from baseline to Weeks 26 and 52. Secondary endpoints included change in plasma concentrations of glucosylceramide and glucosylsphingosine, venglustat pharmacokinetics in plasma and CSF, neurologic function, infiltrative lung disease and systemic disease parameters. Exploratory endpoints included changes in brain volume assessed with volumetric MRI using tensor-based morphometry, and resting functional MRI analysis of regional brain activity and connectivity between resting state networks. Mean (SD) plasma venglustat AUC0-24 on Day 1 was 851 (282) ng•h/ml; Cmax of 58.1 (26.4) ng/ml was achieved at a median tmax 2.00 h. After once-daily venglustat, plasma concentrations (4 h post-dose) were higher compared with Day 1, indicating ∼2-fold accumulation. One participant (Patient 9) had low-to-undetectable venglustat exposure at Weeks 26 and 52. Based on mean plasma and CSF venglustat concentrations (excluding Patient 9), steady state appeared to be reached on or before Week 4. Mean (SD) venglustat concentration at Week 52 was 114 (65.8) ng/ml in plasma and 6.14 (3.44) ng/ml in CSF. After 1 year of treatment, median (inter-quartile range) glucosylceramide decreased 78% (72, 84) in plasma and 81% (77, 83) in CSF; median (inter-quartile range) glucosylsphingosine decreased 56% (41, 60) in plasma and 70% (46, 76) in CSF. Ataxia improved slightly in nine patients: mean (SD, range) total modified Scale for Assessment and Rating of Ataxia score decreased from 2.68 [1.54 (0.0 to 5.5)] at baseline to 1.55 [1.88 (0.0 to 5.0)] at Week 52 [mean change: -1.14 (95% CI: -2.06 to -0.21)]. Whole brain volume increased slightly in patients with venglustat exposure and biomarker reduction in CSF (306.7 ± 4253.3 mm3) and declined markedly in Patient 9 (-13894.8 mm3). Functional MRI indicated stronger connectivity at Weeks 26 and 52 relative to baseline between a broadly distributed set of brain regions in patients with venglustat exposure and biomarker reduction but not Patient 9, although neurocognition, assessed by Vineland II, deteriorated in all domains over time, which illustrates disease progression despite the intervention. There were no deaths, serious adverse events or discontinuations. In adults with Gaucher disease type 3 receiving imiglucerase, addition of once-daily venglustat showed acceptable safety and tolerability and preliminary evidence of clinical stability with intriguing but intrinsically inconsistent signals in selected biomarkers, which need to be validated and confirmed in future research., (© The Author(s) 2022. Published by Oxford University Press on behalf of the Guarantors of Brain.)
- Published
- 2023
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.