10 results on '"Randal A. Serafini"'
Search Results
2. Design of and outcomes in a student-run free mental health clinic serving the uninsured in East Harlem
- Author
-
Samuel K. Powell, Alexandra Saali, Justin Frere, Elizabeth Magill, Hannah Krystal, Randal A. Serafini, Syeda Sultana, Brandon Dale, Muhammad Ali, Vedika Kumar, Debjyoti Datta, Josimar Hernandez-Antonio, Anne Aronson, Yasmin S. Meah, Vicki Gluhoski, and Craig L. Katz
- Subjects
HEDIS ,Psychiatry ,Student-run free clinic ,Immigrants ,Patient outcomes ,RC435-571 - Abstract
Abstract Background Safety-net clinics are an important source of low-cost or free mental healthcare to those with limited financial resources. Such clinics are often staffed by trainees in early stages of their career. Only limited data exist on best practices in treatment-implementation and on clinical outcomes attained in such clinics. The primary purpose of this article is to describe the design of an outpatient psychiatry student-run free clinic (SRFC) serving uninsured individuals in New York City’s East Harlem neighborhood and to analyze the quality of services provided and the clinical outcomes attained. Methods The authors conducted a retrospective chart review of n = 69 patients treated in the EHHOP Mental Health Clinic (E-MHC) to describe the demographic and clinical characteristics of the study population. Utilizing Health Effectiveness Data and Information Set metrics, they estimated the likelihoods of patients meeting metric quality criteria compared to those in other New York State (NYS) insurance groups. The authors derived linear mixed effect and logistic regression models to ascertain factors associated with clinical outcomes. Finally, the authors collected patient feedback on the clinical services received using a customized survey. Results Almost all patients were of Hispanic ethnicity, and about half of patients had more than one psychiatric disorder. The clinical service performance of the E-MHC was non-inferior on most measures examined. Factors associated with symptom improvement were the number of treatment sessions and certain demographic and clinical variables. Patients provided highly positive feedback on the mental healthcare services they received. Conclusions SRFCs can provide quality care to vulnerable patients that leads to clinically meaningful reductions in psychiatric symptoms and is well-received by patients.
- Published
- 2022
- Full Text
- View/download PDF
3. Portable hardware & software technologies for addressing ophthalmic health disparities: A systematic review
- Author
-
Margarita Labkovich, Megan Paul, Eliott Kim, Randal A. Serafini, Shreyas Lakhtakia, Aly A Valliani, Andrew J Warburton, Aashay Patel, Davis Zhou, Bonnie Sklar, James Chelnis, and Ebrahim Elahi
- Subjects
Computer applications to medicine. Medical informatics ,R858-859.7 - Abstract
Vision impairment continues to be a major global problem, as the WHO estimates 2.2 billion people struggling with vision loss or blindness. One billion of these cases, however, can be prevented by expanding diagnostic capabilities. Direct global healthcare costs associated with these conditions totaled $255 billion in 2010, with a rapid upward projection to $294 billion in 2020. Accordingly, WHO proposed 2030 targets to enhance integration and patient-centered vision care by expanding refractive error and cataract worldwide coverage. Due to the limitations in cost and portability of adapted vision screening models, there is a clear need for new, more accessible vision testing tools in vision care. This comparative, systematic review highlights the need for new ophthalmic equipment and approaches while looking at existing and emerging technologies that could expand the capacity for disease identification and access to diagnostic tools. Specifically, the review focuses on portable hardware- and software-centered strategies that can be deployed in remote locations for detection of ophthalmic conditions and refractive error. Advancements in portable hardware, automated software screening tools, and big data-centric analytics, including machine learning, may provide an avenue for improving ophthalmic healthcare.
- Published
- 2022
- Full Text
- View/download PDF
4. SARS-CoV-2 airway infection results in the development of somatosensory abnormalities in a hamster model
- Author
-
Randal A. Serafini, Justin J. Frere, Jeffrey Zimering, Ilinca M. Giosan, Kerri D. Pryce, Ilona Golynker, Maryline Panis, Anne Ruiz, Benjamin R. tenOever, and Venetia Zachariou
- Subjects
Cell Biology ,Molecular Biology ,Biochemistry - Abstract
Although largely confined to the airways, SARS-CoV-2 infection has been associated with sensory abnormalities that manifest in both acute and chronic phenotypes. To gain insight on the molecular basis of these sensory abnormalities, we used the golden hamster model to characterize and compare the effects of infection with SARS-CoV-2 and influenza A virus (IAV) on the sensory nervous system. We detected SARS-CoV-2 transcripts but no infectious material in the cervical and thoracic spinal cord and dorsal root ganglia (DRGs) within the first 24 hours of intranasal virus infection. SARS-CoV-2–infected hamsters exhibited mechanical hypersensitivity that was milder but prolonged compared with that observed in IAV-infected hamsters. RNA sequencing analysis of thoracic DRGs 1 to 4 days after infection suggested perturbations in predominantly neuronal signaling in SARS-CoV-2–infected animals as opposed to type I interferon signaling in IAV-infected animals. Later, 31 days after infection, a neuropathic transcriptome emerged in thoracic DRGs from SARS-CoV-2–infected animals, which coincided with SARS-CoV-2–specific mechanical hypersensitivity. These data revealed potential targets for pain management, including the RNA binding protein ILF3, which was validated in murine pain models. This work elucidates transcriptomic signatures in the DRGs triggered by SARS-CoV-2 that may underlie both short- and long-term sensory abnormalities.
- Published
- 2023
5. Virtual Reality Hemifield Measurements for Corrective Surgery Eligibility in Ptosis Patients: A Pilot Clinical Trial
- Author
-
Margarita Labkovich, Andrew J. Warburton, Stephanie Ying, Aly A. Valliani, Nicholas Kissel, Randal A. Serafini, Raj Mathew, Megan Paul, S. Malin Hovstadius, Vicente N. Navarro, Aashay Patel, Harsha Reddy, and James G. Chelnis
- Subjects
Ophthalmology ,Biomedical Engineering ,Virtual Reality ,Humans ,Blepharoptosis ,Eyelids ,Visual Field Tests ,Pilot Projects ,Visual Fields - Abstract
We developed an accelerated virtual reality (VR) suprathreshold hemifield perimetry algorithm, the median cut hemifield test (MCHT). This study examines the ability of the MCHT to determine ptosis severity and its reversibility with an artificial improvement by eyelid taping on an HTC Vive Pro Eye VR headset and the Humphrey visual field analyzer (HVFA) to assess the capabilities of emerging technologies in evaluating ptosis.In a single visit, the MCHT was administered along with the HVFA 30-2 on ptotic untaped and taped eyelids in a randomized order. The primary end points were a superior field visibility comparison with severity of VF loss and VF improvement after taping for MCHT and HVFA. Secondary end points included evaluating patients' Likert-scaled survey responses on the comfort, speed, and overall experience with both testing modalities.VR's MCHT superior field degrees visible correlated well for severe category margin to reflex distance (r = 0.78) compared with HVFA's (r = -0.21). The MCHT also demonstrated noninferiority (83.3% agreement; P = 1) against HVFA for detection of 30% or more superior visual field improvement after taping, warranting a corrective surgical intervention. In comparing hemi-VF in untaped eyes, both tests demonstrated relative obstruction to the field when comparing normal controls to severe ptosis (HVFA P0.05; MCHT P0.001), which proved sufficient to demonstrate percent improvement with taping. The secondary end point of patient satisfaction favored VR vision testing presentation mode in terms of comfort (P0.01), speed (P0.001), and overall experience (P0.01).This pilot trial supports the use of MCHT for the quantitative measurement of visual field loss owing to ptosis and the reversibility of ptosis that is tested when conducting a presurgical evaluation. We believe the adoption of MCHT testing in oculoplastic clinics could decrease patient burden and accelerate time to corrective treatment.In this study, we look at vision field outputs in patients with ptosis to evaluate its severity and improvement with eyelid taping on a low-profile VR-based technology and compare it with HVFA. Our results demonstrate that alternative, portable technologies such as VR can be used to grade the degree of ptosis and determine whether ptosis surgery could provide a significant superior visual field improvement of 30% or more, all while ensuring a more comfortable experience and faster testing time.
- Published
- 2022
6. SARS-CoV-2 Airway Infection Results in Time-dependent Sensory Abnormalities in a Hamster Model
- Author
-
Randal A. Serafini, Justin J. Frere, Jeffrey Zimering, Ilinca M. Giosan, Kerri D. Pryce, Ilona Golynker, Maryline Panis, Anne Ruiz, Benjamin tenOever, and Venetia Zachariou
- Abstract
Despite being largely confined to the airways, SARS-CoV-2 infection has been associated with sensory abnormalities that manifest in both acute and long-lasting phenotypes. To gain insight on the molecular basis of these sensory abnormalities, we used the golden hamster infection model to characterize the effects of SARS-CoV-2 versus Influenza A virus (IAV) infection on the sensory nervous system. Efforts to detect the presence of virus in the cervical/thoracic spinal cord and dorsal root ganglia (DRGs) demonstrated detectable levels of SARS-CoV-2 by quantitative PCR and RNAscope uniquely within the first 24 hours of infection. SARS-CoV-2-infected hamsters demonstrated mechanical hypersensitivity during acute infection; intriguingly, this hypersensitivity was milder, but prolonged when compared to IAV-infected hamsters. RNA sequencing (RNA-seq) of thoracic DRGs from acute infection revealed predominantly neuron-biased signaling perturbations in SARS-CoV-2-infected animals as opposed to type I interferon signaling in tissue derived from IAV-infected animals. RNA-seq of 31dpi thoracic DRGs from SARS-CoV-2-infected animals highlighted a uniquely neuropathic transcriptomic landscape, which was consistent with substantial SARS-CoV-2-specific mechanical hypersensitivity at 28dpi. Ontology analysis of 1, 4, and 30dpi RNA-seq revealed novel targets for pain management, such as ILF3. Meta-analysis of all SARS-CoV-2 RNA-seq timepoints against preclinical pain model datasets highlighted both conserved and unique pro-nociceptive gene expression changes following infection. Overall, this work elucidates novel transcriptomic signatures triggered by SARS-CoV-2 that may underlie both short- and long-term sensory abnormalities while also highlighting several therapeutic targets for alleviation of infection-induced hypersensitivity.One Sentence SummarySARS-CoV-2 infection results in an interferon-associated transcriptional response in sensory tissues underlying time-dependent hypersensitivity.
- Published
- 2022
7. Targeting HDAC6 in the Dorsal Root Ganglia Attenuates Peripheral Nerve Injury‐induced Hypersensitivity
- Author
-
Ilinca M. Giosan, Jeffery Zimering, Randal A. Serafini, Kerri D. Pryce, and Venetia Zachariou
- Subjects
Genetics ,Molecular Biology ,Biochemistry ,Biotechnology - Published
- 2022
8. A Regional and Projection-Specific Role of RGSz1 in the Ventrolateral Periaqueductal Grey in the Modulation of Morphine Reward
- Author
-
Farhana Sakloth, Omar B. Sanchez-Reyes, Anne Ruiz, Andrew Nicolais, Randal A. Serafini, Kerri D. Pryce, Feodora Bertherat, Angélica Torres-Berrío, Ivone Gomes, Lakshmi A. Devi, Daniel Wacker, and Venetia Zachariou
- Subjects
Pharmacology ,Analgesics, Opioid ,Mice ,Morphine ,Reward ,GTP-Binding Proteins ,Receptors, Opioid, mu ,Molecular Medicine ,Animals ,Periaqueductal Gray ,Signal Transduction - Abstract
Opioid analgesics exert their therapeutic and adverse effects by activating
- Published
- 2022
9. SARS-CoV-2 infection results in lasting and systemic perturbations post recovery
- Author
-
Justin J. Frere, Randal A. Serafini, Kerri D. Pryce, Marianna Zazhytska, Kohei Oishi, Ilona Golynker, Maryline Panis, Jeffrey Zimering, Shu Horiuchi, Daisy A. Hoagland, Rasmus Møller, Anne Ruiz, Jonathan B. Overdevest, Albana Kodra, Peter D. Canoll, James E. Goldman, Alain C. Borczuk, Vasuretha Chandar, Yaron Bram, Robert Schwartz, Stavros Lomvardas, Venetia Zachariou, and Benjamin R. tenOever
- Abstract
SUMMARYSARS-CoV-2 has been found capable of inducing prolonged pathologies collectively referred to as Long-COVID. To better understand this biology, we compared the short- and long-term systemic responses in the golden hamster following either SARS-CoV-2 or influenza A virus (IAV) infection. While SARS-CoV-2 exceeded IAV in its capacity to cause injury to the lung and kidney, the most significant changes were observed in the olfactory bulb (OB) and olfactory epithelium (OE) where inflammation was visible beyond one month post SARS-CoV-2 infection. Despite a lack of detectable virus, OB/OE demonstrated microglial and T cell activation, proinflammatory cytokine production, and interferon responses that correlated with behavioral changes. These findings could be corroborated through sequencing of individuals who recovered from COVID-19, as sustained inflammation in OB/OE tissue remained evident months beyond disease resolution. These data highlight a molecular mechanism for persistent COVID-19 symptomology and characterize a small animal model to develop future therapeutics.
- Published
- 2022
10. Psychological Impacts of the COVID-19 Pandemic
- Author
-
Samuel K. Powell, Alexandra Saali, Randal A. Serafini, Callan P. O’Shea, Justin J. Frere, and Craig L. Katz
- Published
- 2022
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.