1. Enhancement of the yield of poly (ethylene terephthalate) hydrolase production using cell membrane protection strategy.
- Author
-
Chen XQ, Rao DM, Zhou XY, Li Y, Zhao XM, Kong DM, Xu H, Feng CQ, Wang L, Su LQ, Yan ZF, and Wu J
- Abstract
Biodegradation, particularly via enzymatic degradation, has emerged as an efficient and eco-friendly solution for Poly (ethylene terephthalate) (PET) pollution. The production of PET hydrolases plays a role in the large-scale enzymatic degradation. However, an effective variant, 4Mz, derived from Thermobifida fusca cutinase (Tfu_0883), was previously associated with a significant reduction in yield when compared to the wild-type enzyme. In this study, a novel cell membrane protection strategy was developed to enhance the yield of 4Mz. This approach increased the yield of 4Mz by 18.2-fold from shaken flasks to 3-L bioreactors, reaching a yield of 3.1 g·L
-1 , the highest yield of a PET hydrolase described thus far. In addition, the raw culture broth from 4Mz was applied directly for the enzymatic degradation of PET bottles, achieving a 91.2 % degradation rate. These advancements render the large-scale enzymatic degradation of PET more feasible, thus contributing to the more sustainable management of plastic waste., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024. Published by Elsevier Ltd.)- Published
- 2024
- Full Text
- View/download PDF