18 results on '"Teira E"'
Search Results
2. A global database of dissolved organic matter (DOM) concentration measurements in coastal waters (CoastDOM v1)
- Author
-
Lønborg, C., Carreira, C., Abril, G., Agustí, S., Amaral, V., Andersson, Agneta, Arístegui, J., Bhadury, P., Bif, M. B., Borges, A. V., Bouillon, S., Calleja, M. Ll., Cotovicz Jr., L. C., Cozzi, S., Doval, M., Duarte, C. M., Eyre, B., Fichot, C. G., García-Martín, E. E., Garzon-Garcia, A., Giani, M., Gonçalves-Araujo, R., Gruber, R., Hansell, D. A., Hashihama, F., He, D., Holding, J. M., Hunter, W. R., Ibánhez, J. S. P., Ibello, V., Jiang, S., Kim, G., Klun, K., Kowalczuk, P., Kubo, A., Lee, C. -W, Lopes, C. B., Maggioni, F., Magni, P., Marrase, C., Martin, P., McCallister, S. L., McCallum, R., Medeiros, P. M., Morán, X. A. G., Muller-Karger, F. E., Myers-Pigg, A., Norli, M., Oakes, J. M., Osterholz, H., Park, H., Lund Paulsen, M., Rosentreter, J. A., Ross, J. D., Rueda-Roa, D., Santinelli, C., Shen, Y., Teira, E., Tinta, T., Uher, G., Wakita, M., Ward, N., Watanabe, K., Xin, Y., Yamashita, Y., Yang, L., Yeo, J., Yuan, H., Zheng, Q., Álvarez-Salgado, X. A., Lønborg, C., Carreira, C., Abril, G., Agustí, S., Amaral, V., Andersson, Agneta, Arístegui, J., Bhadury, P., Bif, M. B., Borges, A. V., Bouillon, S., Calleja, M. Ll., Cotovicz Jr., L. C., Cozzi, S., Doval, M., Duarte, C. M., Eyre, B., Fichot, C. G., García-Martín, E. E., Garzon-Garcia, A., Giani, M., Gonçalves-Araujo, R., Gruber, R., Hansell, D. A., Hashihama, F., He, D., Holding, J. M., Hunter, W. R., Ibánhez, J. S. P., Ibello, V., Jiang, S., Kim, G., Klun, K., Kowalczuk, P., Kubo, A., Lee, C. -W, Lopes, C. B., Maggioni, F., Magni, P., Marrase, C., Martin, P., McCallister, S. L., McCallum, R., Medeiros, P. M., Morán, X. A. G., Muller-Karger, F. E., Myers-Pigg, A., Norli, M., Oakes, J. M., Osterholz, H., Park, H., Lund Paulsen, M., Rosentreter, J. A., Ross, J. D., Rueda-Roa, D., Santinelli, C., Shen, Y., Teira, E., Tinta, T., Uher, G., Wakita, M., Ward, N., Watanabe, K., Xin, Y., Yamashita, Y., Yang, L., Yeo, J., Yuan, H., Zheng, Q., and Álvarez-Salgado, X. A.
- Abstract
Measurements of dissolved organic carbon (DOC), nitrogen (DON), and phosphorus (DOP) concentrations are used to characterize the dissolved organic matter (DOM) pool and are important components ofbiogeochemical cycling in the coastal ocean. Here, we present the first edition of a global database (CoastDOMv1; available at https://doi.org/10.1594/PANGAEA.964012, Lønborg et al., 2023) compiling previously published and unpublished measurements of DOC, DON, and DOP in coastal waters. These data are complementedby hydrographic data such as temperature and salinity and, to the extent possible, other biogeochemical variables(e.g. chlorophyll a, inorganic nutrients) and the inorganic carbon system (e.g. dissolved inorganic carbon andtotal alkalinity). Overall, CoastDOM v1 includes observations of concentrations from all continents. However,most data were collected in the Northern Hemisphere, with a clear gap in DOM measurements from the SouthernHemisphere. The data included were collected from 1978 to 2022 and consist of 62 338 data points for DOC,20 356 for DON, and 13 533 for DOP. The number of measurements decreases progressively in the sequenceDOC > DON > DOP, reflecting both differences in the maturity of the analytical methods and the greater focuson carbon cycling by the aquatic science community. The global database shows that the average DOC concentration in coastal waters (average ± standard deviation (SD): 182±314 µmolC L−1; median: 103 µmolC L−1) is13-fold higher than the average coastal DON concentration (13.6 ± 30.4 µmol N L−1; median: 8.0 µmol N L−1),which is itself 39-fold higher than the average coastal DOP concentration (0.34 ± 1.11 µmol P L−1; median:0.18 µmol P L−1). This dataset will be useful for identifying global spatial and temporal patterns in DOM and willhelp facilitate the reuse of DOC, DON, and DOP data in studies aimed at better characterizing local biogeochemical processes; closing nutrient budgets; estimating carbon, nitrogen, and phosp
- Published
- 2024
- Full Text
- View/download PDF
3. Contrasting resistance of prokaryotic plankton biomass and community composition to experimental nutrient inputs in a coastal upwelling system (NW Spain)
- Author
-
Gutiérrez-Barral, A., primary, Fernández, E., additional, Hernández-Ruiz, M., additional, and Teira, E., additional
- Published
- 2023
- Full Text
- View/download PDF
4. VERTICAL AND SEASONAL PATTERNS CONTROL BACTERIOPLANKTON COMMUNITIES AT TWO HORIZONTALLY COHERENT COASTAL UPWELLING SITES OFF GALICIA (NW SPAIN)
- Author
-
Hernando-Morales, V. (Víctor), Varela, M.M. (Marta María), Needham, David M., Cram, Jacob, A., Fuhrman, J.A. (Jed A.), and Teira, E. (Eva)
- Subjects
Medio Marino y Protección Ambiental ,Sede Central IEO ,Bacterioplankton community .Spatial andtemporal variability .Spatial synchrony .Upwelling-downwelling .ARISA - Abstract
Analysis of seasonal patterns of marine bacterial community structure along horizontal and vertical spatial scales can help to predict long-term responses to climate change. Several recent studies have shown predictable seasonal reoccurrence of bacterial assemblages. However, only a few have assessed temporal variability over both horizontal and vertical spatial scales. Here we simultaneously studied the bacterial community structure at two different locations and depths in shelf waters of a coastal upwelling system during an annual cycle. The most noticeable biogeographic patterns observed were seasonality, horizontal homogeneity and spatial synchrony in bacterial diversity and community structure related with regional upwelling-downwelling dynamics. Water column mixing eventually disrupted bacterial community structure vertical heterogeneity. Our results are consistent with previous temporal studies of marine bacterioplankton in other temperate regions, and also suggest a marked influence of regional factors on the bacterial communities inhabiting this coastal upwelling system. Bacterial-mediated carbon fluxes in this productive region appear to be mainly controlled by community structure dynamics in surface waters, and local environmental factors at the base of the euphotic zone.
- Published
- 2023
5. Empirical leucine-to-carbon conversion factors in north-eastern Atlantic waters (50-200 m) shaped by bacterial community composition and optical signature of DOM
- Author
-
Orta-Ponce, C.P. (Cessna Pamela), Rodríguez-Ramos, T. (Tamara), Nieto-Cid, M. (Mar), Teira, E. (Eva), Guerrero-Feijóo, E. (Elisa), Bode, A. (Antonio), and Varela, M.M. (Marta María)
- Subjects
conversion factors ,Bacterial community composition ,NE Atlantic Ocean ,community composition ,dissolved organic matter ,DOM ,leucine-to carbon conversion factors ,organic matter - Abstract
Article research, Microbial heterotrophic activity is a major process regulating the flux of dissolved organic matter (DOM) in the ocean, while the characteristics of this DOM strongly influence its microbial utilization and fate in the ocean. In order to broaden the vertical resolution of leucine-to-carbon conversion factors (CFs), needed for converting substrate incorporation into biomass production by heterotrophic bacteria, 20 dilution experiments were performed in the North Atlantic Ocean. We found a depth-stratification in empirical CFs values from epipelagic to bathypelagic waters (4.00 ± 1.09 to 0.10 ± 0.00 kg C mol Leu−1). Our results demonstrated that the customarily used theoretical CF of 1.55 kg C mol Leu−1 in oceanic samples can lead to an underestimation of prokaryotic heterotrophic production in epi- and mesopelagic waters, while it can overestimate it in the bathypelagic ocean. Pearson correlations showed that CFs were related not only to hydrographic variables such as temperature, but also to specific phylogenetic groups and DOM quality and quantity indices. Furthermore, a multiple linear regression model predicting CFs from relatively simple hydrographic and optical spectroscopic measurements was attempted. Taken together, our results suggest that differences in CFs throughout the water column are significantly connected to DOM, and also reflect differences linked to specific prokaryotic groups., 2,927
- Published
- 2021
6. Co-occurrence and diversity patterns of benthonic and planktonic communities in a shallow marine ecosystem
- Author
-
Raquel Ríos-Castro, Cecilia Costas-Selas, Alberto Pallavicini, Luigi Vezzulli, Beatriz Novoa, Eva Teira, Antonio Figueras, Ministerio de Economía y Competitividad (España), Xunta de Galicia, European Commission, Axencia Galega de Innovación, Rios-Castro, R, Costas-Selas, C, Pallavicini, A, Vezzulli, L, Novoa, B, Teira, E, and Figueras, A
- Subjects
Global and Planetary Change ,co-occurrence network ,benthonic ,prokaryote ,Ocean Engineering ,Aquatic Science ,Oceanography ,shallow marine ecosystem ,eukaryote ,metabarcoding ,2401 Biología Animal (Zoología) ,planktonic ,Water Science and Technology - Abstract
18 pages, 8 figures, 1 table.-- This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY), Marine microorganisms are involved in a variety of biogeochemical cycles and live in diverse ecological communities where they interact with each other and with other organisms to guarantee ecosystem functions. The present study focused on a shallow marine environment located in Ría de Vigo (NW, Spain), where sediment and size-fractionated plankton samples were collected from 2016 to 2018. DNA metabarcoding was used to describe the eukaryote and prokaryote composition and diversity in sediments and plankton and to depict possible associations among the most frequent and abundant organisms by co-occurrence network analysis. High eukaryote and prokaryote diversity indices were obtained in all compartments. Significant differences among eukaryote and prokaryote communities were found between sediment and plankton samples, with a high percentage of exclusive operational taxonomic units (OTUs) associated with each compartment, especially from sediment. Despite these differences, shared taxa between water and sediment were also obtained, suggesting a relatively meaningful exchange of organisms between both environmental compartments. Significant co-occurrences were mainly obtained between prokaryotes (41%), followed by eukaryotes–prokaryotes (32%) and between eukaryotes (27%). The abundant and strong positive correlations between organisms, including representatives from the sediment and the water column, suggested an essential role of biotic interactions as community-structuring factors in shallow waters where beneficial associations likely prevail. This study provides a novel approach for the detailed description of the eukaryote and prokaryote diversity and co-occurrence patterns in a shallow marine area, including both the sediment and different water-size fractions. The high diversity obtained and the detection of predominantly coexisting interactions among organisms from sediment and the overlying water column suggest a movement of species between both habitats and therefore confirm the importance of integratively studying shallow marine ecosystems, This work was supported by the Ministerio de Economía y Competitividad, Spain (CTM2017-83362-R), Consellería de Economía, Emprego e Industria–GAIN, Xunta de Galicia (IN607B 2019/01), Fondo Europeo de Desarrollo Regional FEDER en el marco del programa Interreg V A España – Portugal (POCTEP) 2014-(20200474_BLUEBIOLAB), VIVALDI [678589] (EU H2020), and Controlling Microbiomes Circulations for Better Food Systems” (CIRCLES) [818290] (EU H2020). RR-C wishes to thank the Axencia Galega de Innovación (GAIN, Xunta de Galicia) for her predoctoral contract (IN606A-2018/020)
- Published
- 2022
7. Unveiling interactions mediated by B vitamins between diatoms and their associated bacteria from cocultures.
- Author
-
Costas-Selas C, Martínez-García S, Pinhassi J, Fernández E, and Teira E
- Abstract
Unveiling the interactions among phytoplankton and bacteria at the level of species requires axenic isolates to experimentally demonstrate their mutual effects. In this study, we describe the interactions among the diatoms Pseudo-nitzschia granii and Chaetoceros tenuissimus and their associated bacterial species, isolated from surface water of a coastal upwelling system using coculture experiments. Microalgae growth was assessed in axenic monocultures or in coculture with each of their co-isolated bacteria in the presence or absence of B vitamins. Pseudo-nitzschia granii growth was limited by B-vitamin supply, except when cultured with the bacteria Jannaschia cystaugens, which seemed to provide adequate levels of B vitamins to the diatom. Chaetoceros tenuissimus growth was reduced in the absence of B vitamins. Moreover, the growth of C. tenuissimus was stimulated by Alteromonas sp. and Celeribacter baekdonensis during the exponential growth. These results show a diversity of specific interactions between the diatoms and co-isolated bacteria, ranging from allelopathy to commensalism. Understanding how interactions between phytoplankton and bacteria modulate the structure and function of marine microbial plankton communities will contribute to a greater knowledge of plankton ecology and improve our ability to predict nutrient fluxes in marine ecosystems or the formation of blooms in a context of global change., (© 2024 The Author(s). Journal of Phycology published by Wiley Periodicals LLC on behalf of Phycological Society of America.)
- Published
- 2024
- Full Text
- View/download PDF
8. Response of the toxic dinoflagellate Alexandrium minutum to exudates of the eelgrass Zostera marina.
- Author
-
Díaz-Alonso A, Rodríguez F, Riobó P, Álvarez-Salgado X, Teira E, and Fernández E
- Subjects
- Harmful Algal Bloom, Photosynthesis, Marine Toxins toxicity, Plankton metabolism, Bacteria metabolism, Zosteraceae, Dinoflagellida physiology
- Abstract
Biotic interactions are a key factor in the development of harmful algal blooms. Recently, a lower abundance of planktonic dinoflagellates has been reported in areas dominated by seagrass beds, suggesting a negative interaction between both groups of organisms. The interaction between planktonic dinoflagellates and marine phanerogams, as well as the way in which bacteria can affect this interaction, was studied in two experiments using a non-axenic culture of the toxic dinoflagellate Alexandrium minutum exposed to increasing additions of eelgrass (Zostera marina) exudates from old and young leaves and to the presence or absence of antibiotics. In these experiments, A. minutum abundance, growth rate and photosynthetic efficiency (Fv/Fm), as well as bacterial abundance, were measured every 48 h. Toxin concentration per cell was determined at the end of both experiments. Our results demonstrated that Z. marina exudates reduced A. minutum growth rate and, in one of the experiments, also the photosynthetic efficiency. These results are not an indirect effect mediated by the bacteria in the culture, although their growth modify the magnitude of the negative impact on the dinoflagellate growth rate. No clear pattern was observed in the variation of toxin production with the treatments., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024. Published by Elsevier B.V.)
- Published
- 2024
- Full Text
- View/download PDF
9. Impact of wildfire ash on bacterioplankton abundance and community composition in a coastal embayment (Ría de Vigo, NW Spain).
- Author
-
Gutiérrez-Barral A, Teira E, Díaz-Alonso A, Justel-Díez M, Kaal J, and Fernández E
- Subjects
- Chlorophyll A, RNA, Ribosomal, 16S genetics, Spain, Plankton, Bacteria, Water, Ecosystem, Wildfires
- Abstract
Wildfire ash can have an impact on coastal prokaryotic plankton. To understand the extent to which community composition and abundance of coastal prokaryotes are affected by ash, two ash addition experiments were performed. Ash from a massive wildfire that took place in the Ría de Vigo watershed in October 2017 was added to natural surface water samples collected in the middle sector of the ría during the summer of 2019 and winter of 2020, and incubated for 72 h, under natural water temperature and irradiance conditions. Plankton responses were assessed through chlorophyll a and bacterial abundance measurements. Prokaryotic DNA was analyzed using 16S rRNA gene partial sequencing. In summer, when nutrient concentrations were low in the ría, the addition of ash led to an increase in phytoplankton and bacterial abundance, increasing the proportions of Alteromonadales, Flavobacteriales, and the potentially pathogenic Vibrio, among other taxa. After the winter runoff events, nutrient concentrations in the Ría de Vigo were high, and only minor changes in bacterial abundance were detected. Our findings suggest that the compounds associated with wildfire ash can alter the composition of bacterioplanktonic communities, which is relevant information for the management of coastal ecosystems in fire-prone areas., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 The Authors. Published by Elsevier Ltd.. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
10. Linking the impact of bacteria on phytoplankton growth with microbial community composition and co-occurrence patterns.
- Author
-
Costas-Selas C, Martínez-García S, Delgadillo-Nuño E, Justel-Díez M, Fuentes-Lema A, Fernández E, and Teira E
- Subjects
- Phytoplankton, RNA, Ribosomal, 16S genetics, Bacteria, Diatoms, Microbiota
- Abstract
The interactions between microalgae and bacteria have recently emerged as key control factors which might contribute to a better understanding on how phytoplankton communities assemble and respond to environmental disturbances. We analyzed partial 16S rRNA and 18S rRNA genes from a total of 42 antibiotic bioassays, where phytoplankton growth was assessed in the presence or absence of an active bacterial community. A significant negative impact of bacteria was observed in 18 bioassays, a significant positive impact was detected in 5 of the cases, and a non-detectable effect occurred in 19 bioassays. Thalasiossira spp., Chlorophytes, Vibrionaceae and Alteromonadales were relatively more abundant in the samples where a positive effect of bacteria was observed compared to those where a negative impact was observed. Phytoplankton diversity was lower when bacteria negatively affect their growth than when the effect was beneficial. The phytoplankton-bacteria co-occurrence subnetwork included many significant Chlorophyta-Alteromonadales and Bacillariophyceae-Alteromonadales positive associations. Phytoplankton-bacteria co-exclusions were not detected in the network, which contrasts with the negative effect of bacteria on phytoplankton growth frequently detected in the bioassays, suggesting strong competitive interactions. Overall, this study adds strong evidence supporting the key role of phytoplankton-bacteria interactions in the microbial communities., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 The Authors. Published by Elsevier Ltd.. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
11. Role of Bacterial Community Composition as a Driver of the Small-Sized Phytoplankton Community Structure in a Productive Coastal System.
- Author
-
Costas-Selas C, Martínez-García S, Logares R, Hernández-Ruiz M, and Teira E
- Subjects
- Humans, Bacteria, Seasons, Eukaryota, Phytoplankton, Plankton
- Abstract
We present here the first detailed description of the seasonal patterns in bacterial community composition (BCC) in shelf waters off the Ría de Vigo (Spain), based on monthly samplings during 2 years. Moreover, we studied the relationship between bacterial and small-sized eukaryotic community composition to identify potential biotic interactions among components of these two communities. Bacterial operational taxonomic unit (OTU) richness and diversity systematically peaked in autumn-winter, likely related to low resource availability during this period. BCC showed seasonal and vertical patterns, with Rhodobacteraceae and Flavobacteriaceae families dominating in surface waters, and SAR11 clade dominating at the base of the photic zone (30 m depth). BCC variability was significantly explained by environmental variables (e.g., temperature of water, solar radiation, or dissolved organic matter). Interestingly, a strong and significant correlation was found between BCC and small-sized eukaryotic community composition (ECC), which suggests that biotic interactions may play a major role as structuring factors of the microbial plankton in this productive area. In addition, co-occurrence network analyses revealed strong and significant, mostly positive, associations between bacteria and small-sized phytoplankton. Positive associations likely result from mutualistic relationships (e.g., between Dinophyceae and Rhodobacteraceae), while some negative correlations suggest antagonistic interactions (e.g., between Pseudo-nitzchia sp. and SAR11). These results support the key role of biotic interactions as structuring factors of the small-sized eukaryotic community, mostly driven by positive associations between small-sized phytoplankton and bacteria., (© 2022. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
12. Inputs of seabird guano alter microbial growth, community composition and the phytoplankton-bacterial interactions in a coastal system.
- Author
-
Justel-Díez M, Delgadillo-Nuño E, Gutiérrez-Barral A, García-Otero P, Alonso-Barciela I, Pereira-Villanueva P, Álvarez-Salgado XA, Velando A, Teira E, and Fernández E
- Subjects
- Animals, Chlorophyll A metabolism, Bacteria, Birds, Phytoplankton metabolism, Ecosystem
- Abstract
Seabird guano enters coastal waters providing bioavailable substrates for microbial plankton, but their role in marine ecosystem functioning remains poorly understood. Two concentrations of the water soluble fraction (WSF) of gull guano were added to different natural microbial communities collected in surface waters from the Ría de Vigo (NW Spain) in spring, summer, and winter. Samples were incubated with or without antibiotics (to block bacterial activity) to test whether gull guano stimulated phytoplankton and bacterial growth, caused changes in taxonomic composition, and altered phytoplankton-bacteria interactions. Alteromonadales, Sphingobacteriales, Verrucomicrobia and diatoms were generally stimulated by guano. Chlorophyll a (Chl a) concentration and bacterial abundance significantly increased after additions independently of the initial ambient nutrient concentrations. Our study demonstrates, for the first time, that the addition of guano altered the phytoplankton-bacteria interaction index from neutral (i.e. phytoplankton growth was not affected by bacterial activity) to positive (i.e. phytoplankton growth was stimulated by bacterial activity) in the low-nutrient environment occurring in spring. In contrast, when environmental nutrient concentrations were high, the interaction index changed from positive to neutral after guano additions, suggesting the presence of some secondary metabolite in the guano that is needed for phytoplankton growth, which would otherwise be supplied by bacteria., (© 2023 The Authors. Environmental Microbiology published by Applied Microbiology International and John Wiley & Sons Ltd.)
- Published
- 2023
- Full Text
- View/download PDF
13. High-throughput sequencing as a tool for monitoring prokaryote communities in a wastewater treatment plant.
- Author
-
Ríos-Castro R, Cabo A, Teira E, Cameselle C, Gouveia S, Payo P, Novoa B, and Figueras A
- Subjects
- Humans, Animals, Wastewater, Bacteria genetics, High-Throughput Nucleotide Sequencing, Microbiota, Bivalvia genetics, Water Purification methods
- Abstract
In this study, the DNA metabarcoding technique was used to explore the prokaryote diversity and community structure in wastewater collected in spring and winter 2020-2021 as well as the efficiency of the treatment in a wastewater treatment plant (WWTP) in Ría de Vigo (NW Spain). The samplings included raw wastewater from the inlet stream (M1), the discharge water after the disinfection treatment (M3) and mussels used as bioindicators of possible contamination of the marine environment. Significant differences were discovered in the microbiome of each type of sample (M1, M3 and mussels), with 92 %, 45 % and 44 % of exclusive OTUs found in mussel, M3 and M1 samples respectively. Seasonal differences were also detected in wastewater samples, with which abiotic parameters (temperature, pH) could be strongly involved. Bacteria present in raw wastewater (M1) were associated with the human gut microbiome, and therefore, potential pathogens that could be circulating in the population in specific periods were detected (e.g., Arcobacter sp. and Clostridium sp.). A considerable decrease in putative pathogenic organisms from the M1 to M3 wastewater fractions and the scarce presence in mussels (<0.5 % total reads) confirmed the effectiveness of pathogen removal in the wastewater treatment plant. Our results showed the potential of the DNA metabarcoding technique for monitoring studies and confirmed its application in wastewater-based epidemiology (WBE) and environmental contamination studies. Although this technique cannot determine if the infective pathogens are present, it can characterize the microbial communities and the putative pathogens that are circulating through the population (microbiome of M1) and also confirm the efficacy of depuration treatment, which can directly affect the aquaculture sector and even human and veterinary health., Competing Interests: Declaration of competing interest The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
14. Functional responses of key marine bacteria to environmental change - toward genetic counselling for coastal waters.
- Author
-
Pinhassi J, Farnelid H, García SM, Teira E, Galand PE, Obernosterer I, Quince C, Vila-Costa M, Gasol JM, Lundin D, Andersson AF, Labrenz M, and Riemann L
- Abstract
Coastal ecosystems deteriorate globally due to human-induced stress factors, like nutrient loading and pollution. Bacteria are critical to marine ecosystems, e.g., by regulating nutrient cycles, synthesizing vitamins, or degrading pollutants, thereby providing essential ecosystem services ultimately affecting economic activities. Yet, until now bacteria are overlooked both as mediators and indicators of ecosystem health, mainly due to methodological limitations in assessing bacterial ecosystem functions. However, these limitations are largely overcome by the advances in molecular biology and bioinformatics methods for characterizing the genetics that underlie functional traits of key bacterial populations - "key" in providing important ecosystem services, being abundant, or by possessing high metabolic rates. It is therefore timely to analyze and define the functional responses of bacteria to human-induced effects on coastal ecosystem health. We posit that categorizing the responses of key marine bacterial populations to changes in environmental conditions through modern microbial oceanography methods will allow establishing the nascent field of genetic counselling for our coastal waters. This requires systematic field studies of linkages between functional traits of key bacterial populations and their ecosystem functions in coastal seas, complemented with systematic experimental analyses of the responses to different stressors. Research and training in environmental management along with dissemination of results and dialogue with societal actors are equally important to ensure the role of bacteria is understood as fundamentally important for coastal ecosystems. Using the responses of microorganisms as a tool to develop genetic counselling for coastal ecosystems can ultimately allow for integrating bacteria as indicators of environmental change., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2022 Pinhassi, Farnelid, García, Teira, Galand, Obernosterer, Quince, Vila-Costa, Gasol, Lundin, Andersson, Labrenz and Riemann.)
- Published
- 2022
- Full Text
- View/download PDF
15. On the hidden diversity and niche specialization of the microbial realm of subterranean estuaries.
- Author
-
Calvo-Martin E, Teira E, Álvarez-Salgado XA, Rocha C, Jiang S, Justel-Díez M, and Ibánhez JSP
- Subjects
- RNA, Ribosomal, 16S genetics, Archaea genetics, Oxygen, Estuaries, Groundwater
- Abstract
Subterranean estuaries (STEs) modulate the chemical composition of continental groundwater before it reaches the coast, but their microbial community is poorly known. Here, we explored the microbial ecology of two neighbouring, yet contrasting STEs (Panxón and Ladeira STEs; Ría de Vigo, NW Iberian Peninsula). We investigated microbial composition (16S rRNA gene sequencing), abundance, heterotrophic production and their geochemical drivers. A total of 10,150 OTUs and 59 phyla were retrieved from porewater sampled during four surveys covering each STE seepage face. In both STEs, we find a very diverse microbial community composed by abundant cosmopolitans and locally restricted rare taxa. Porewater oxygen and dissolved organic matter are the main environmental predictors of microbial community composition. More importantly, the high variety of benthic microbiota links to biogeochemical processes of different elements in STEs. The oxygen-rich Panxón beach showed strong associations of the ammonium oxidizing archaea Nitrosopumilales with the heterotrophic community, thus acting as a net source of nitrogen to the coast. On the other hand, the prevailing anoxic conditions of Ladeira beach promoted the dominance of anaerobic heterotrophs related to the degradation of complex and aromatic compounds, such as Dehalococcoidia and Desulfatiglans, and the co-occurrence of methane oxidizers and methanogens., (© 2022 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.)
- Published
- 2022
- Full Text
- View/download PDF
16. Rapid bacterioplankton transcription cascades regulate organic matter utilization during phytoplankton bloom progression in a coastal upwelling system.
- Author
-
Pontiller B, Martínez-García S, Joglar V, Amnebrink D, Pérez-Martínez C, González JM, Lundin D, Fernández E, Teira E, and Pinhassi J
- Subjects
- Aquatic Organisms, Bacteria genetics, Carbohydrates, Glycoside Hydrolases metabolism, Nitrogen metabolism, Peptide Hydrolases metabolism, Ecosystem, Phytoplankton metabolism
- Abstract
Coastal upwelling zones are hotspots of oceanic productivity, driven by phytoplankton photosynthesis. Bacteria, in turn, grow on and are the principal remineralizers of dissolved organic matter (DOM) produced in aquatic ecosystems. However, the molecular processes that key bacterial taxa employ to regulate the turnover of phytoplankton-derived DOM are not well understood. We therefore carried out comparative time-series metatranscriptome analyses of bacterioplankton in the Northwest Iberian upwelling system, using parallel sampling of seawater and mesocosms with in situ-like conditions. The mesocosm experiment uncovered a taxon-specific progression of transcriptional responses from bloom development (characterized by a diverse set of taxa in the orders Cellvibrionales, Rhodobacterales, and Pelagibacterales), over early decay (mainly taxa in the Alteromonadales and Flavobacteriales), to senescence phases (Flavobacteriales and Saprospirales taxa). Pronounced order-specific differences in the transcription of glycoside hydrolases, peptidases, and transporters were found, supporting that functional resource partitioning is dynamically structured by temporal changes in available DOM. In addition, comparative analysis of mesocosm and field samples revealed a high degree of metabolic plasticity in the degradation and uptake of carbohydrates and nitrogen-rich compounds, suggesting these gene systems critically contribute to modulating the stoichiometry of the labile DOM pool. Our findings suggest that cascades of transcriptional responses in gene systems for the utilization of organic matter and nutrients largely shape the fate of organic matter on the time scales typical of upwelling-driven phytoplankton blooms., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
17. Faeces of marine birds and mammals as substrates for microbial plankton communities.
- Author
-
Alba-González P, Álvarez-Salgado XA, Cobelo-García A, Kaal J, and Teira E
- Subjects
- Animals, Birds, Feces, Mammals, Phytoplankton, Seawater, Microbiota, Plankton
- Abstract
The chemical composition of the seawater soluble fraction (WSF) of yellow-legged gulls and harbour seal faeces and their impact on microbial plankton communities from an eutrophic coastal area have been tested. After characterisation of the C:N:P stoichiometry, trace metals content and organic molecular composition of the faeces, significant differences between species have been observed in all parameters. Seagull faeces present about three times larger N content than seal faeces and are also richer in trace elements except for Cu and Zn. Organic nitrogen in seagull faeces is dominated by uric acid, while the proteins are the main N source in seal faeces. It is remarkable that seagull faeces are five times more soluble in seawater than seal faeces and present a much higher N content (48.0 versus 3.5 mg N in the WSF per gram of dry faeces), >85% of which as dissolved organic nitrogen, with C:N molar ratios of 2.4 and 13 for seagull and seal faeces, respectively. Based on this contrasting N content, large differences were expected in their impact on microbial populations. To test this hypothesis, a 3-day microcosm incubation experiment was performed, in which coastal seawater was amended with realistic concentrations of the WSF of seagull or seal faeces. A significant and similar increase in bacterial biomass occurred in response to both treatments. In the case of phytoplankton, the impact of the treatment with seagull faeces was significantly larger that the effect of the treatment with seal faeces. Our data suggest that the distinct competitive abilities of phytoplankton and bacteria largely influence the potential impact of distinct animal faeces on primary productivity in coastal ecosystems. Impacts on the microbial plankton communities do not affect only this trophic level, but the whole trophic chain, contributing to nutrient recycling in coastal areas where large populations of these species are settled., (Copyright © 2022 Elsevier Ltd. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
18. Empirical leucine-to-carbon conversion factors in north-eastern Atlantic waters (50-2000 m) shaped by bacterial community composition and optical signature of DOM.
- Author
-
Orta-Ponce CP, Rodríguez-Ramos T, Nieto-Cid M, Teira E, Guerrero-Feijóo E, Bode A, and Varela MM
- Abstract
Microbial heterotrophic activity is a major process regulating the flux of dissolved organic matter (DOM) in the ocean, while the characteristics of this DOM strongly influence its microbial utilization and fate in the ocean. In order to broaden the vertical resolution of leucine-to-carbon conversion factors (CFs), needed for converting substrate incorporation into biomass production by heterotrophic bacteria, 20 dilution experiments were performed in the North Atlantic Ocean. We found a depth-stratification in empirical CFs values from epipelagic to bathypelagic waters (4.00 ± 1.09 to 0.10 ± 0.00 kg C mol Leu
-1 ). Our results demonstrated that the customarily used theoretical CF of 1.55 kg C mol Leu-1 in oceanic samples can lead to an underestimation of prokaryotic heterotrophic production in epi- and mesopelagic waters, while it can overestimate it in the bathypelagic ocean. Pearson correlations showed that CFs were related not only to hydrographic variables such as temperature, but also to specific phylogenetic groups and DOM quality and quantity indices. Furthermore, a multiple linear regression model predicting CFs from relatively simple hydrographic and optical spectroscopic measurements was attempted. Taken together, our results suggest that differences in CFs throughout the water column are significantly connected to DOM, and also reflect differences linked to specific prokaryotic groups., (© 2021. The Author(s).)- Published
- 2021
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.