12 results on '"Vinuela, Ana"'
Search Results
2. Discovery of drug–omics associations in type 2 diabetes with generative deep-learning models
- Author
-
Allesøe, Rosa Lundbye, Lundgaard, Agnete Troen, Hernández Medina, Ricardo, Aguayo-Orozco, Alejandro, Johansen, Joachim, Nissen, Jakob Nybo, Brorsson, Caroline, Mazzoni, Gianluca, Niu, Lili, Biel, Jorge Hernansanz, Leal Rodríguez, Cristina, Brasas, Valentas, Webel, Henry, Benros, Michael Eriksen, Pedersen, Anders Gorm, Chmura, Piotr Jaroslaw, Jacobsen, Ulrik Plesner, Mari, Andrea, Koivula, Robert, Mahajan, Anubha, Vinuela, Ana, Tajes, Juan Fernandez, Sharma, Sapna, Haid, Mark, Hong, Mun-Gwan, Musholt, Petra B., De Masi, Federico, Vogt, Josef, Pedersen, Helle Krogh, Gudmundsdottir, Valborg, Jones, Angus, Kennedy, Gwen, Bell, Jimmy, Thomas, E. Louise, Frost, Gary, Thomsen, Henrik, Hansen, Elizaveta, Hansen, Tue Haldor, Vestergaard, Henrik, Muilwijk, Mirthe, Blom, Marieke T., ‘t Hart, Leen M., Pattou, Francois, Raverdy, Violeta, Brage, Soren, Kokkola, Tarja, Heggie, Alison, McEvoy, Donna, Mourby, Miranda, Kaye, Jane, Hattersley, Andrew, McDonald, Timothy, Ridderstråle, Martin, Walker, Mark, Forgie, Ian, Giordano, Giuseppe N., Pavo, Imre, Ruetten, Hartmut, Pedersen, Oluf, Hansen, Torben, Dermitzakis, Emmanouil, Franks, Paul W., Schwenk, Jochen M., Adamski, Jerzy, McCarthy, Mark I., Pearson, Ewan, Banasik, Karina, Rasmussen, Simon, and Brunak, Søren
- Published
- 2023
- Full Text
- View/download PDF
3. Territorial inequalities: Analysis and policy design, implementation and evaluation
- Author
-
Viñuela, Ana
- Published
- 2022
- Full Text
- View/download PDF
4. Deletion of ABCB10 in beta-cells protects from high-fat diet induced insulin resistance
- Author
-
Shum, Michael, Segawa, Mayuko, Gharakhanian, Raffi, Viñuela, Ana, Wortham, Matthew, Baghdasarian, Siyouneh, Wolf, Dane M., Sereda, Samuel B., Nocito, Laura, Stiles, Linsey, Zhou, Zhiqiang, Gutierrez, Vincent, Sander, Maike, Shirihai, Orian S., and Liesa, Marc
- Published
- 2022
- Full Text
- View/download PDF
5. Author Correction: Discovery of drug–omics associations in type 2 diabetes with generative deep-learning models
- Author
-
Allesøe, Rosa Lundbye, Lundgaard, Agnete Troen, Hernández Medina, Ricardo, Aguayo-Orozco, Alejandro, Johansen, Joachim, Nissen, Jakob Nybo, Brorsson, Caroline, Mazzoni, Gianluca, Niu, Lili, Biel, Jorge Hernansanz, Leal Rodríguez, Cristina, Brasas, Valentas, Webel, Henry, Benros, Michael Eriksen, Pedersen, Anders Gorm, Chmura, Piotr Jaroslaw, Jacobsen, Ulrik Plesner, Mari, Andrea, Koivula, Robert, Mahajan, Anubha, Vinuela, Ana, Tajes, Juan Fernandez, Sharma, Sapna, Haid, Mark, Hong, Mun-Gwan, Musholt, Petra B., De Masi, Federico, Vogt, Josef, Pedersen, Helle Krogh, Gudmundsdottir, Valborg, Jones, Angus, Kennedy, Gwen, Bell, Jimmy, Thomas, E. Louise, Frost, Gary, Thomsen, Henrik, Hansen, Elizaveta, Hansen, Tue Haldor, Vestergaard, Henrik, Muilwijk, Mirthe, Blom, Marieke T., ‘t Hart, Leen M., Pattou, Francois, Raverdy, Violeta, Brage, Soren, Kokkola, Tarja, Heggie, Alison, McEvoy, Donna, Mourby, Miranda, Kaye, Jane, Hattersley, Andrew, McDonald, Timothy, Ridderstråle, Martin, Walker, Mark, Forgie, Ian, Giordano, Giuseppe N., Pavo, Imre, Ruetten, Hartmut, Pedersen, Oluf, Hansen, Torben, Dermitzakis, Emmanouil, Franks, Paul W., Schwenk, Jochen M., Adamski, Jerzy, McCarthy, Mark I., Pearson, Ewan, Banasik, Karina, Rasmussen, Simon, and Brunak, Søren
- Published
- 2023
- Full Text
- View/download PDF
6. Dissecting the interplay between ageing, sex and body mass index on a molecular level
- Author
-
Michalettou, Theodora Dafni, Hong, Mun-Gwan, Fernandez, Juan, Sharma, Sapna, Brorsson, Caroline, Koivula, Robert, Adamski, Jerzy, Brunak, Soren, Dermitzakis, Emmanouil, Franks, Paul, McCarthy, Mark, Pearson, Ewan, Schwenk, Jochen M., Walker, Mark, Brown, Andrew, Vinuela, Ana, Michalettou, Theodora Dafni, Hong, Mun-Gwan, Fernandez, Juan, Sharma, Sapna, Brorsson, Caroline, Koivula, Robert, Adamski, Jerzy, Brunak, Soren, Dermitzakis, Emmanouil, Franks, Paul, McCarthy, Mark, Pearson, Ewan, Schwenk, Jochen M., Walker, Mark, Brown, Andrew, and Vinuela, Ana
- Abstract
QC 20240301
- Published
- 2024
7. Identification of shared molecular signatures of ageing and metabolic diseases using multi-omic data
- Author
-
Michalettou, Theodora Dafni, Hong, Mun-Gwan, Fernandez, Juan, Sharma, Sapna, Brorsson, Caroline Anna, Koivula, Robert, Adamski, Jerzy, Brunak, Soren, Dermitzakis, Emmanouil, Franks, Paul, McCarthy, Mark, Pearson, Ewan, Schwenk, Jochen, Walker, Mark, Brown, Andrew, Vinuela, Ana, Michalettou, Theodora Dafni, Hong, Mun-Gwan, Fernandez, Juan, Sharma, Sapna, Brorsson, Caroline Anna, Koivula, Robert, Adamski, Jerzy, Brunak, Soren, Dermitzakis, Emmanouil, Franks, Paul, McCarthy, Mark, Pearson, Ewan, Schwenk, Jochen, Walker, Mark, Brown, Andrew, and Vinuela, Ana
- Abstract
QC 20231128
- Published
- 2023
8. Discovery of Type 2 Diabetes genes using an accessible tissue
- Author
-
Davtian, David, Schwenk, Jochen M., McCarthy, Mark, Mahajan, Anubha, Hong, Mun-Gwan, Dermitzakis, Emmanouil, Im, Hae Kyung, Pearson, Ewan, Vinuela, Ana, Brown, Andrew, Davtian, David, Schwenk, Jochen M., McCarthy, Mark, Mahajan, Anubha, Hong, Mun-Gwan, Dermitzakis, Emmanouil, Im, Hae Kyung, Pearson, Ewan, Vinuela, Ana, and Brown, Andrew
- Abstract
QC 20231121
- Published
- 2023
9. Proteomic analysis of 92 circulating proteins and their effects in cardiometabolic diseases
- Author
-
Carland, Corinne, Png, Grace, Malarstig, Anders, Kho, Pik Fang, Gustafsson, Stefan, Michaëlsson, Karl, Lind, Lars, Tsafantakis, Emmanouil, Karaleftheri, Maria, Dedoussis, George, Ramisch, Anna, Macdonald-Dunlop, Erin, Klaric, Lucija K., Joshi, Peter, Chen, Yan M., Bjoerck, Hanna, Eriksson, Per, Carrasco-Zanini, Julia, Wheeler, Eleanor, Suhre, Karsten, Gilly, Arthur, Zeggini, Eleftheria, Vinuela, Ana T., Dermitzakis, Emmanouil F., Wilson, James, Langenberg, Claudia, Thareja, Gaurav, Halama, Anna, Schmidt, Frank, Zanetti, Daniela, Assimes, Themistocles, Consortium, S C A L L O P, Carland, Corinne, Png, Grace, Malarstig, Anders, Kho, Pik Fang, Gustafsson, Stefan, Michaëlsson, Karl, Lind, Lars, Tsafantakis, Emmanouil, Karaleftheri, Maria, Dedoussis, George, Ramisch, Anna, Macdonald-Dunlop, Erin, Klaric, Lucija K., Joshi, Peter, Chen, Yan M., Bjoerck, Hanna, Eriksson, Per, Carrasco-Zanini, Julia, Wheeler, Eleanor, Suhre, Karsten, Gilly, Arthur, Zeggini, Eleftheria, Vinuela, Ana T., Dermitzakis, Emmanouil F., Wilson, James, Langenberg, Claudia, Thareja, Gaurav, Halama, Anna, Schmidt, Frank, Zanetti, Daniela, Assimes, Themistocles, and Consortium, S C A L L O P
- Abstract
Background: Human plasma contains a wide variety of circulating proteins. These proteins can be important clinical biomarkers in disease and also possible drug targets. Large scale genomics studies of circulating proteins can identify genetic variants that lead to relative protein abundance. Methods: We conducted a meta-analysis on genome-wide association studies of autosomal chromosomes in 22,997 individuals of primarily European ancestry across 12 cohorts to identify protein quantitative trait loci (pQTL) for 92 cardiometabolic associated plasma proteins. Results: We identified 503 (337 cis and 166 trans) conditionally independent pQTLs, including several novel variants not reported in the literature. We conducted a sex-stratified analysis and found that 118 (23.5%) of pQTLs demonstrated heterogeneity between sexes. The direction of effect was preserved but there were differences in effect size and significance. Additionally, we annotate trans-pQTLs with nearest genes and report plausible biological relationships. Using Mendelian randomization, we identified causal associations for 18 proteins across 19 phenotypes, of which 10 have additional genetic colocalization evidence. We highlight proteins associated with a constellation of cardiometabolic traits including angiopoietin-related protein 7 (ANGPTL7) and Semaphorin 3F (SEMA3F). Conclusion: Through large-scale analysis of protein quantitative trait loci, we provide a comprehensive overview of common variants associated with plasma proteins. We highlight possible biological relationships which may serve as a basis for further investigation into possible causal roles in cardiometabolic diseases.
- Published
- 2023
- Full Text
- View/download PDF
10. Discovery of drug-omics associations in type 2 diabetes with generative deep-learning models:[with Author Correction]
- Author
-
Allesøe, Rosa Lundbye, Lundgaard, Agnete Troen, Hernández Medina, Ricardo, Aguayo-Orozco, Alejandro, Johansen, Joachim, Nissen, Jakob Nybo, Brorsson, Caroline, Mazzoni, Gianluca, Niu, Lili, Biel, Jorge Hernansanz, Brasas, Valentas, Webel, Henry, Benros, Michael Eriksen, Pedersen, Anders Gorm, Chmura, Piotr Jaroslaw, Jacobsen, Ulrik Plesner, Mari, Andrea, Koivula, Robert, Mahajan, Anubha, Vinuela, Ana, Tajes, Juan Fernandez, Sharma, Sapna, Haid, Mark, Hong, Mun-Gwan, Musholt, Petra B, De Masi, Federico, Vogt, Josef, Pedersen, Helle Krogh, Gudmundsdottir, Valborg, Jones, Angus, Kennedy, Gwen, Bell, Jimmy, Thomas, E Louise, Frost, Gary, Thomsen, Henrik, Hansen, Elizaveta, Hansen, Tue Haldor, Vestergaard, Henrik, Muilwijk, Mirthe, Blom, Marieke T, 't Hart, Leen M, Pattou, Francois, Raverdy, Violeta, Brage, Soren, Ridderstråle, Martin, Pedersen, Oluf, Hansen, Torben, Banasik, Karina, Rasmussen, Simon, Brunak, Søren, Allesøe, Rosa Lundbye, Lundgaard, Agnete Troen, Hernández Medina, Ricardo, Aguayo-Orozco, Alejandro, Johansen, Joachim, Nissen, Jakob Nybo, Brorsson, Caroline, Mazzoni, Gianluca, Niu, Lili, Biel, Jorge Hernansanz, Brasas, Valentas, Webel, Henry, Benros, Michael Eriksen, Pedersen, Anders Gorm, Chmura, Piotr Jaroslaw, Jacobsen, Ulrik Plesner, Mari, Andrea, Koivula, Robert, Mahajan, Anubha, Vinuela, Ana, Tajes, Juan Fernandez, Sharma, Sapna, Haid, Mark, Hong, Mun-Gwan, Musholt, Petra B, De Masi, Federico, Vogt, Josef, Pedersen, Helle Krogh, Gudmundsdottir, Valborg, Jones, Angus, Kennedy, Gwen, Bell, Jimmy, Thomas, E Louise, Frost, Gary, Thomsen, Henrik, Hansen, Elizaveta, Hansen, Tue Haldor, Vestergaard, Henrik, Muilwijk, Mirthe, Blom, Marieke T, 't Hart, Leen M, Pattou, Francois, Raverdy, Violeta, Brage, Soren, Ridderstråle, Martin, Pedersen, Oluf, Hansen, Torben, Banasik, Karina, Rasmussen, Simon, and Brunak, Søren
- Abstract
The application of multiple omics technologies in biomedical cohorts has the potential to reveal patient-level disease characteristics and individualized response to treatment. However, the scale and heterogeneous nature of multi-modal data makes integration and inference a non-trivial task. We developed a deep-learning-based framework, multi-omics variational autoencoders (MOVE), to integrate such data and applied it to a cohort of 789 people with newly diagnosed type 2 diabetes with deep multi-omics phenotyping from the DIRECT consortium. Using in silico perturbations, we identified drug-omics associations across the multi-modal datasets for the 20 most prevalent drugs given to people with type 2 diabetes with substantially higher sensitivity than univariate statistical tests. From these, we among others, identified novel associations between metformin and the gut microbiota as well as opposite molecular responses for the two statins, simvastatin and atorvastatin. We used the associations to quantify drug-drug similarities, assess the degree of polypharmacy and conclude that drug effects are distributed across the multi-omics modalities.
- Published
- 2023
11. Genetic Landscape of the ACE2 Coronavirus Receptor
- Author
-
Yang, Zhijian, Macdonald-Dunlop, Erin, Chen, Jiantao, Zhai, Ranran, Li, Ting, Richmond, Anne, Klaric, Lucija, Pirastu, Nicola, Ning, Zheng, Zheng, Chenqing, Wang, Yipeng, Huang, Tingting, He, Yazhou, Guo, Huiming, Ying, Kejun, Gustafsson, Stefan, Prins, Bram, Ramisch, Anna, Dermitzakis, Emmanouil T., Png, Grace, Eriksson, Niclas, Haessler, Jeffrey, Hu, Xiaowei, Zanetti, Daniela, Boutin, Thibaud, Hwang, Shih-Jen, Wheeler, Eleanor, Pietzner, Maik, Raffield, Laura M., Kalnapenkis, Anette, Peters, James E., Vinuela, Ana, Gilly, Arthur, Elmstahl, Solve, Dedoussis, George, Petrie, John R., Polasek, Ozren, Folkersen, Lasse, Chen, Yan, Yao, Chen, Vosa, Urmo, Pairo-Castineira, Erola, Clohisey, Sara, Bretherick, Andrew D., Rawlik, Konrad, Esko, Tonu, Enroth, Stefan, Johansson, Åsa, Gyllensten, Ulf B., Langenberg, Claudia, Levy, Daniel, Hayward, Caroline, Assimes, Themistocles L., Kooperberg, Charles, Manichaikul, Ani W., Siegbahn, Agneta, Wallentin, Lars, Lind, Lars, Zeggini, Eleftheria, Schwenk, Jochen M., Butterworth, Adam S., Michaëlsson, Karl, Pawitan, Yudi, Joshi, Peter K., Baillie, J. Kenneth, Malarstig, Anders, Reiner, Alexander P., Wilson, James F., Shen, Xia, Yang, Zhijian, Macdonald-Dunlop, Erin, Chen, Jiantao, Zhai, Ranran, Li, Ting, Richmond, Anne, Klaric, Lucija, Pirastu, Nicola, Ning, Zheng, Zheng, Chenqing, Wang, Yipeng, Huang, Tingting, He, Yazhou, Guo, Huiming, Ying, Kejun, Gustafsson, Stefan, Prins, Bram, Ramisch, Anna, Dermitzakis, Emmanouil T., Png, Grace, Eriksson, Niclas, Haessler, Jeffrey, Hu, Xiaowei, Zanetti, Daniela, Boutin, Thibaud, Hwang, Shih-Jen, Wheeler, Eleanor, Pietzner, Maik, Raffield, Laura M., Kalnapenkis, Anette, Peters, James E., Vinuela, Ana, Gilly, Arthur, Elmstahl, Solve, Dedoussis, George, Petrie, John R., Polasek, Ozren, Folkersen, Lasse, Chen, Yan, Yao, Chen, Vosa, Urmo, Pairo-Castineira, Erola, Clohisey, Sara, Bretherick, Andrew D., Rawlik, Konrad, Esko, Tonu, Enroth, Stefan, Johansson, Åsa, Gyllensten, Ulf B., Langenberg, Claudia, Levy, Daniel, Hayward, Caroline, Assimes, Themistocles L., Kooperberg, Charles, Manichaikul, Ani W., Siegbahn, Agneta, Wallentin, Lars, Lind, Lars, Zeggini, Eleftheria, Schwenk, Jochen M., Butterworth, Adam S., Michaëlsson, Karl, Pawitan, Yudi, Joshi, Peter K., Baillie, J. Kenneth, Malarstig, Anders, Reiner, Alexander P., Wilson, James F., and Shen, Xia
- Abstract
Background: SARS-CoV-2, the causal agent of COVID-19, enters human cells using the ACE2 (angiotensin-converting enzyme 2) protein as a receptor. ACE2 is thus key to the infection and treatment of the coronavirus. ACE2 is highly expressed in the heart and respiratory and gastrointestinal tracts, playing important regulatory roles in the cardiovascular and other biological systems. However, the genetic basis of the ACE2 protein levels is not well understood. Methods: We have conducted the largest genome-wide association meta-analysis of plasma ACE2 levels in >28 000 individuals of the SCALLOP Consortium (Systematic and Combined Analysis of Olink Proteins). We summarize the cross-sectional epidemiological correlates of circulating ACE2. Using the summary statistics-based high-definition likelihood method, we estimate relevant genetic correlations with cardiometabolic phenotypes, COVID-19, and other human complex traits and diseases. We perform causal inference of soluble ACE2 on vascular disease outcomes and COVID-19 severity using mendelian randomization. We also perform in silico functional analysis by integrating with other types of omics data. Results: We identified 10 loci, including 8 novel, capturing 30% of the heritability of the protein. We detected that plasma ACE2 was genetically correlated with vascular diseases, severe COVID-19, and a wide range of human complex diseases and medications. An X-chromosome cis-protein quantitative trait loci-based mendelian randomization analysis suggested a causal effect of elevated ACE2 levels on COVID-19 severity (odds ratio, 1.63 [95% CI, 1.10-2.42]; P=0.01), hospitalization (odds ratio, 1.52 [95% CI, 1.05-2.21]; P=0.03), and infection (odds ratio, 1.60 [95% CI, 1.08-2.37]; P=0.02). Tissue- and cell type-specific transcriptomic and epigenomic analysis revealed that the ACE2 regulatory variants were enriched for DNA methylation sites in blood immune cells. Conclusions: Human plasma ACE2 shares a genetic basis with cardi
- Published
- 2022
- Full Text
- View/download PDF
12. Four groups of type 2 diabetes contribute to the etiological and clinical heterogeneity in newly diagnosed individuals: An IMI DIRECT study
- Author
-
Wesolowska-Andersen, Agata, primary, Brorsson, Caroline A., additional, Bizzotto, Roberto, additional, Mari, Andrea, additional, Tura, Andrea, additional, Koivula, Robert, additional, Mahajan, Anubha, additional, Vinuela, Ana, additional, Tajes, Juan Fernandez, additional, Sharma, Sapna, additional, Haid, Mark, additional, Prehn, Cornelia, additional, Artati, Anna, additional, Hong, Mun-Gwan, additional, Musholt, Petra B., additional, Kurbasic, Azra, additional, De Masi, Federico, additional, Tsirigos, Kostas, additional, Pedersen, Helle Krogh, additional, Gudmundsdottir, Valborg, additional, Thomas, Cecilia Engel, additional, Banasik, Karina, additional, Jennison, Chrisopher, additional, Jones, Angus, additional, Kennedy, Gwen, additional, Bell, Jimmy, additional, Thomas, Louise, additional, Frost, Gary, additional, Thomsen, Henrik, additional, Allin, Kristine, additional, Hansen, Tue Haldor, additional, Vestergaard, Henrik, additional, Hansen, Torben, additional, Rutters, Femke, additional, Elders, Petra, additional, t’Hart, Leen, additional, Bonnefond, Amelie, additional, Canouil, Mickaël, additional, Brage, Soren, additional, Kokkola, Tarja, additional, Heggie, Alison, additional, McEvoy, Donna, additional, Hattersley, Andrew, additional, McDonald, Timothy, additional, Teare, Harriet, additional, Ridderstrale, Martin, additional, Walker, Mark, additional, Forgie, Ian, additional, Giordano, Giuseppe N., additional, Froguel, Philippe, additional, Pavo, Imre, additional, Ruetten, Hartmut, additional, Pedersen, Oluf, additional, Dermitzakis, Emmanouil, additional, Franks, Paul W., additional, Schwenk, Jochen M., additional, Adamski, Jerzy, additional, Pearson, Ewan, additional, McCarthy, Mark I., additional, and Brunak, Søren, additional
- Published
- 2022
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.