1. Enrichment Effects Induced by Non-uniform Wettability Surfaces in the Presence of Non-condensable Gas: A Molecular Dynamics Simulation
- Author
-
Weili Qiang, Zhong Lan, Bingang Du, Wenzhi Ren, Wei Xu, Rongfu Wen, and Xuehu Ma
- Subjects
Electrochemistry ,General Materials Science ,Surfaces and Interfaces ,Condensed Matter Physics ,Spectroscopy - Abstract
For vapor condensation, the control of heterogeneous nucleation and spatial distribution of nuclei are crucial for regulating droplet dynamics and improving condensation efficiency. However, due to the complex characteristics of multicomponent, multiphase, and multiscale, the underlying mechanism of mixed vapor condensation remains unclear, especially at the nucleation stage. In this paper, we focus on the enrichment effects of non-uniform wettability surfaces by molecular dynamics simulation, which could intensify the droplet nucleation and growth processes in a water-air mixed system. The results clarify the inhibitory effect of non-condensable gas on droplet nucleation and prove that only 1% of non-condensable gas could reduce one half of the condensation performance from a molecular perspective. Furthermore, non-uniform surfaces are designed to promote the efficient enrichment of vapor molecules on nucleation sites, and the synergistic effect of hydrophilic and hydrophobic regions is proposed. In addition, the non-uniform wettability surfaces are characterized by varying the proportion and dispersion of hydrophilic regions. The results reveal that an optimal proportion of hydrophilic region (
- Published
- 2022